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1. Introduction

The class of hypergeometric functions (HG-functions) of several variables is of considerable

interest. It continues to be a subject of great attention [1]. On the other hand, there is the theory

of analytical complexity, which is orientated at the study of questions about representability of

functions of several variables with the help of superpositions of functions of lesser number of

variables. In particular, the questions of representability of functions of two variables with the

help of functions of one variable [2]. In the context of this theory, the simplest functions of two

variables are the functions of complexity one (the functions of one variable have complexity zero).

These are analytic functions of variables (x, y), which can be locally represented as z(x, y) =

c(a(x) + b(y)) (a, b, c are nonconstant analytic functions of one variable). These functions are

of special interest. Firstly, they are the functions, which have the stabilizer of the maximal

dimension in the gauge group (the dimension is equal to three) [3]. Secondly, if we consider

z(x, y) as a function of a 3-web on the plane, then such web is equivalent to the hexagonal web

if and only if z has the speci�ed form [4].

The set of all such functions is, except for the functions of one variable, the set of analytic

functions, which is the set of the solutions of a di�erential polynomial of order three. This

polynomial is exactly the numerator of the following di�erential fraction:
(
ln(z′x/z

′
y)
)′′
xy
, i.e., the

de�ning condition for the functions of complexity one has the form:

d1(z) = z′xz
′
y(z
′′′
xxyz

′′
y − z′′′xyyz′x) + z′′xy((z

′
x)

2z′′yy − (z′y)
2z′′xx) = 0, z′x z

′
y 6= 0. (1)

Note that the class of functions of complexity one includes all four arithmetic operations. If we

remove the inequality, which excludes the functions of one variable, we obtain Cl1 = {d1(z) = 0},
which is the class of the functions of complexity not greater than one.

We think that the theory of hypergeometric functions of several (in particular, of two) vari-

ables di�ers qualitatively from the theory of hypergeometric functions of one variable by the
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fact that the class of hypergeometric functions of several variables is in a sense too large and

the problem of the choice of a narrower class of the most interesting HG-functions arise. Which

HG-functions are the most interesting? No doubt is it possible to give di�erent answers to this

question. For the functions of two variables we o�er the following answer:

Good HG-functions are the HG-functions of complexity one.

We interpret a HG-function of two variables (Examples 1-7) as, following [1], a solution of a Horn

system. To de�ne the Horn system for functions of the variables (x, y), we need four polynomials

P,Q,R, S in two variables. Let X = x ∂
∂x , Y = y ∂

∂y be the homogeneous partial di�erential

operators. Then the Horn system corresponding to the given four polynomials is the system of

two linear di�erential equations with nonconstant coe�cients with respect to the function z(x, y)

of the form

Gx z = (xP (X,Y )−Q(X,Y )) z = 0,

Gy z = (y R(X,Y )− S(X,Y )) z = 0. (2)

What is the set of all solutions of complexity one of this system? The aim of this paper

is to give the explicit description of the solutions of complexity one for a series of examples of

systems of the form (2). Almost all examples are from [1]. With the growth of degrees of the

de�ning equations and the number of free parameters the problem of the explicit description of

the space of solutions quickly becomes computationally di�cult even for polynomials of degree

not greater than two. However, one can hope that the consideration of these examples will allow

to formulate questions for the further study (some of them are given at the end of the paper).

In the theory of HG-functions there is an established approach, which suggests that an im-

portant characteristic of the Horn system is its holonomicity. The holonomicity of the system, in

particular, guarantees the �nite-dimensionality of the space of solutions. In our considerations

we do not require holonomicity.

Since the Horn system is a system of linear di�erential equations, then the set of its solutions

is a linear space. Equation (1) is not linear. From the geometric point of view, the set of its

solutions is an in�nite-dimensional cone. In fact, the transformation (z(x, y) → λ z(x, y)) maps

the solutions in solutions. Hence, we can understand our question as the question about the

construction of the intersection of the cone and the linear space.

Further we will need the following simple observation. Let two nonconstant functions a(x)

and b(y) are given. For the existence of a function c(t) for the function w(x, y), such that in a

neighbourhood of a generic point there is a local representation of the form w = c(a(x) + b(y)),

it is necessary and su�cient that

V (w) =

(
1

a′(x)

∂

∂x
− 1

b′(y)

∂

∂y

)
(w) = 0. (3)

The concrete computations were held with the use of the Maple system.
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2. A Set of Examples

EXAMPLE 1. Let

P = x2, Q = q1 x+ q2 y, R = y2, S = s1 x+ s2 y, q1q2s1s2 6= 0.

Then the system (2) for z = c(a(x) + b(y)) takes the form (low indexes are numbers of

derivatives)

Gx z = x3a1
2c2 + x3a2c1 + x2a1c1 − q1xc1a1 − q2yc1b1 = 0,

Gy z = y3b1
2c2 + y3b2c1 − s1xc1a1 + y2b1c1 − s2yc1b1 = 0.

We can express the ratio c2/c1 from �rst equation and from second equation. We get two

relations: the �rst is the equality of the both expressions, the second is the result of action of

operator V on each of them. Thus,

e1 = x3y3a1
2b2 − x3y3a2b12 − x4a13s1 + x3y2a1

2b1 − x3ya12b1s2 −
x2y3a1b1

2 + xy3a1b1
2q1 + y4b1

3q2 = 0,

e2 = −a3a1b1x4 + 2 a2
2b1x

4 + a2a1b1x
3 − a2a1b1x2q1 − a12b2xyq2 −

2 a2b1
2xyq2 + a1

2b1x
2 − 2 a1

2b1xq1 − a12b1xq2 − 3 a1b1
2yq2 = 0.

The expressions e1 and e2 are linear by b2. The coe�cients of b2 are not idenitcally zero. It is

possible to express b2 from e1 = 0 and from e2 = 0. We get two relations: the �rst is the equality

of the both expressions, the second is the result of the action of operator ∂/∂x on each of them.

Thus,

e3 = x6y2a1a3b1 − 2x6y2a2
2b1 − x5y2a1a2b1 + x4y2a1a2b1q1 +

3x3y3a2b1
2q2 − x4y2a12b1 + x4a1

3q2s1 + 2x3y2a1
2b1q1 +

x3ya1
2b1q2s2 + 4x2y3a1b1

2q2 − xy3a1b12q1q2 − y4b13q22 = 0,

e4 = a3a1b1
2x4y3 − 2 a2

2b1
2x4y3 + a2a1

3x5s1 − a2a1b12x3y3 + a2a1b1
2x2y3q1 +

2 a2b1
3xy4q2 + a1

4x4s1 − a12b12x2y3 + 2 a1
2b1

2xy3q1 + 3 a1b1
3y4q2 = 0.

The expressions e3 and e4 are quadratic by b2. The necessary condition of solvability is equality

to zero of the resultant of e3 and e4 with respect to b1. This resultant has the form

x11y11a1
4q2

2s1 r(x, y, a1, a2, a3),

hence, r = 0. And r is the polynomial of degree four with respect to y. The coe�cient in r of

y4 is equal to

−x2a15q23s23 (xa2 + a1) (2xa2 + 3 a1)
2
.

Thus, it is enough to consider two cases:

the �rst is (2xa2 + 3 a1) = 0, and second is (xa2 + a1) = 0. We can solve these di�erential

equations. In the �rst case we get a1 = k/x3/2 and in the second case we get a1 = k/x. If

we substitute the �rst solution in r, we can see that the equation r = 0 is impossible. If we

substitute the second solution in r, we have

r = −k
8q2

3s1 (q1s2 − q2s1)
x7

y.
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And we see that r = 0 i� (q1, q2) = λ (s1, s2), λ 6= 0. We can substitute a1 = k/x in e3 = 0 and

we have yb1q2 + kq1 = 0. In such case we have a(x) + b(y) = k ln(x) − k q1
q2

ln(y) + const and

z = c(y/xα), where α = q2/q1 = s2/s1. Then we can substitute such z in Gx z = Gy z = 0 and

we get:

c′′(t) t+ c′(t) = 0, hence c(t) = λ ln(t) + µ. Thus, we have

Proposition 1. The solutions of the Horn system of complexity one (i.e. of the kind

z = c(a(x) + b(y)), a, b, c are nonconstant) for Example 1 exist i� q2/q1 = s2/s1 = α. In this

case the solutions have the form

z = λ ln(
y

xα
) + µ, α 6= 0, λ 6= 0.

EXAMPLE 2. Let

P = x+ 1, Q = 1, R = y + 1, S = 1.

Then the system (2) for z = c(a(x) + b(y)) takes the form

Gx z = x2a1c1 + xc0 − c0 = 0, Gy z = y2b1c1 + yc0 − c0 = 0.

Then we have
c1
c0

= −x− 1

x2a1
= −y − 1

y2b1
=

1

λ
.

Thus,

a1 = − (x− 1)λ

x2
, b1 = − (y − 1)λ

y2
.

If we substitute this expressions in Gx = 0 and Gy = 0, we get

− (x− 1) (λ c1 − c0) = − (y − 1) (λ c1 − c0) = 0.

Hence c(t) = exp(−t/λ) è z = µ (x y exp(1/x+ 1/y))−1.

Proposition 2. The solutions of the Horn system of complexity one for Example 2 have the

form

z =
µ

x y exp( 1x + 1
y )
, µ 6= 0.

EXAMPLE 3. Let

P = 1, Q = (x− 1) R = 1, S = (y − 1).

If z = c(a(x) + b(y)) we have

Gx z = −xc1a1 + xc0 + c0 = 0, Gy z = −yc1b1 + yc0 + c0 = 0.

After elimination of c we obtain

−xa1y + yb1x− xa1 + yb1 = 0, a2x
2 + a2x+ a1 = 0.
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Hence

a(x) =
λ

x
+ λ ln (x) + ln (α) , b(y) = λ ln (y) +

λ

y
+ ln (β) , λ 6= 0.

Then we get the equation on function c. When we will solve this equation, we will obtain the

following proposition.

Proposition 3. The solutions of the Horn system of complexity one for Example 3 have the

form

z = µxy e(x+y), µ 6= 0.

EXAMPLE 4. Let

P = x2 y + 1, Q = 1 R = y + 1, S = 1.

For z = c(a(x) + b(y)) we have

Gx z = x3ya1
2b1c3 + x3ya2b1c2 + x2ya1b1c2 + xc0 − c0 = 0,

Gy z = y2b1c1 + yc0 − c0 = 0.

From the second equation we get c1 = (−b2y2 − yb1 + b2y + 2 b1) c0. After di�erentiation of this

equation with respect to x we obtain such expressions for c2 and c3. After the substitution of

these expressions in Gxz = 0 we get:

l = x3y4a2b1 − x3y3a12 − 2x3y3a2b1 + x2y4a1b1 + xy5b1
2 + 3x3y2a1

2 +

x3a2y
2b1 − 2x2y3a1b1 − y5b12 − 3x3ya1

2 + x2a1y
2b1 + x3a1

2 = 0.

From V (c1/c0) = 0 we get e = −b2y2−yb1+b2y+2 b1 = 0. After di�erentiation of l with respect

to y we obtain:

(l)′y = x3y4a2b2 + 4x3y3a2b1 − 2x3y3a2b2 + x2y4a1b2 + 2xy5b1b2 − 3x3y2a1
2 −

6x3a2y
2b1 + x3a2y

2b2 + 4x2y3a1b1 − 2x2y3a1b2 + 5xy4b1
2 − 2 y5b1b2 +

6x3ya1
2 + 2x3a2yb1 − 6x2a1y

2b1 + x2a1y
2b2 − 5 y4b1

2 − 3x3a1
2 + 2x2a1yb1 = 0.

The resultant of (l)′y and e with respect to b2 equals

r1 = 3x3y4a2b1 − 3x3y3a1
2 − 6x3y3a2b1 + 3x2y4a1b1 + 3xy5b1

2 + 9x3y2a1
2 +

3x3a2y
2b1 − 6x2y3a1b1 − xy4b12 − 3 y5b1

2 − 9x3ya1
2 + 3x2a1y

2b1 +

y4b1
2 + 3x3a1

2 = 0.

The resultant of r1 and l with respect to b1 equals

r2 = x6y8a1
4 (y − 1)

6
(x− 1)

2
= 0.

But r2 is not equal to zero identically. Thus, we have:

Proposition 4. The solutions of the Horn system of complexity one for Example 4 do not exist.

EXAMPLE 5. Let

P = x+ y − p, Q = x+ q, R = x+ y − p, S = y + s.
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Case p = 0.

Gx z = x2a1c1 + xyb1c1 − xa1c1 − qc0 = 0,

Gy z = xya1c1 + y2b1c1 − yb1c1 − sc0 = 0.

From c1 6= 0 we get q 6= 0 and s 6= 0. After elimination of c we obtain

e1 = qxya1 + qy2b1 − sx2a1 − sxyb1 − qyb1 + sxa1 = 0,

e2 = −x2a2b1 + xya1b2 − xa1b1 + xa2b1 − yb12 + a1b1 = 0.

From e1 = 0 we get b1. b1 does not depend on x, hence

e3 = −a2q2xy2 + 2 a2qsx
2y − a2s2x3 + a2q

2xy − a1q2y2 − a2qsx2 + 2 a1qsxy −
a2qsxy − a1s2x2 + a2s

2x2 + a1q
2y − 2 a1qsx+ a2qsx− a1qsy + a1qs = 0.

This expression is quadratic in y. Write that the coe�cient of y2 is equal to zero, we get

q2 (xa2 + a1) = 0. Hence a(x) = λ ln(x) + α and s = −q, b(y) = −λ ln(y) + β. As a result we

get z = µ (y/x)q.

Case p 6= 0.

We have

Gx z = x2a1c1 + xyb1c1 − pxc0 − xc1a1 − qc0 = 0,

Gy z = xya1c1 + y2b1c1 − pyc0 − yc1b1 − sc0 = 0.

By elimination of c we get

e1 = pxya1 − pxyb1 + qxya1 + qy2b1 − sx2a1 − sxyb1 − qyb1 + sxa1 = 0,

e2 = −a2b1px3 + a1b2px
2y + a2b1px

2 − a2b1qx2 + a1b2qxy − a1b1qx+ a2b1qx−
b1

2qy + a1b1q = 0.

Let us express b2 from e2 = 0 and b1 from e1 = 0. We have two conditions. The �rst: (b1)
′
x = 0

and the second: (b1)
′
y = b2. After elimination the nonzero factors we can see that both conditions

coincide and have the form

e3 = a2p
2x2y + a2pqx

2y − a2pqxy2 − a2psx3 + a2psx
2y − a2q2xy2 + 2 a2qsx

2y −
a2s

2x3 + a2pqxy − a1pqy2 − a1psx2 + a2psx
2 + a2q

2xy − a1q2y2 − a2qsx2 +
2 a1qsxy − a2qsxy − a1s2x2 + a2s

2x2 + a1pqy + a1q
2y − 2 a1qsx+

a2qsx− a1qsy + a1qs = 0.

This expression is quadratic in y. Write that the coe�cient of y2 is equal zero, we get:

q (xa2 + a1) (p+ q) = 0.

Case p 6= 0, q = 0.

Then e3 has the form x2 (p+ s) (pya2 − sxa2 − sa1 + sa2). We have two opportunities for

this expression to be equal to zero: either s = −p or a2 = s = 0. The �rst case is impossible,

because in this case e1 = pxa1 (x+ y − 1). In the second case a(x) = λx + α, b(y) = λ y + β.

Thus, we get:

z = µ (1− (x+ y))p, q = s = 0, p 6= 0.
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Case p 6= 0, q = −p, q 6= 0. Then e3 is divisible by s. But s = 0 is impossible, if e1 = 0.

Thus, we have s = −p and:

z = µ

(
(x− 1)(y − 1)

xy
− 1

)
, s = q = −p.

Case p 6= 0, q 6= 0, (p + q) 6= 0 (xa2 + a1) = 0. Then a(x) = λ ln(x) + α. From e2 = 0 we

get s = −(p+ q) and from e1 = 0 we get b1 = −λ(p+ q)/qy, b(y) = −λ(p+ q)/q ln(y) + β. We

have:

z = µ
yp+q

xq
, s = −(p+ q), q 6= 0, (p+ q) 6= 0.

Proposition 5. The solutions of the Horn system of complexity one for Example 5 exist in

three cases only:

(a) q 6= 0, p+ q 6= 0, s = −(p+ q), z =
µ

xq ys
,

(b) p 6= 0, s = q = 0, z = µ (1− (x+ y))
p
,

(c) s = q = −p 6= 0, z = µ

(
(x− 1)(y − 1)

x y
− 1

)
,

EXAMPLE 6. Let

P = x(x+ y), Q = x2, R = y(x+ y), S = y2.

For z = c(a(x) + b(y)) we have:

Gx z = x2a1
2c2 + xya1b1c2 + x2a2c1 − xc2a12 + xa1c1 − xc1a2 − c1a1 = 0,

Gy z = xya1b1c2 + y2b1
2c2 + y2b2c1 − yc2b12 + yb1c1 − yc1b2 − c1b1 = 0.

After elimination of c we get

e1 = −x3ya1a2b1 + x2y2a1
2b2 − x2y2a2b12 + xy3a1b1b2 − x2ya12b2 +

x2ya1a2b1 + x2ya2b1
2 − xy2a12b2 − xy2a1b1b2 + xy2a2b1

2 − x2a12b1 +
xya1

2b2 − xya2b12 + y2a1b1
2 + xa1

2b1 − ya1b12 = 0,

e2 = −a3a12b1x4 + 2 a2
2a1b1x

4 − a2a12b2x3y − a3a1b12x3y + a2
2b1

2x3y +

2 a3a1
2b1x

3 − 4 a2
2a1b1x

3 − a13b2x2y + a2a1
2b2x

2y − a2a1b12x2y + a3a1b1
2x2y −

a2
2b1

2x2y − a2a12b1x2 − a3a12b1x2 + 2 a2
2a1b1x

2 + a1
3b2xy −

a1
3b1x+ a2a1

2b1x− a12b12y + a1
3b1 = 0.

And we obtain two expression for b2. Then we have two conditions: equality of both expressions

and their independence of x. We obtain e3(a1, a2, a3, b1) = e4(a1, a2, a3, b1) = 0 (e3 contains 43

monomials, e4 contains 45 monomials). If r is the resultant of e3 and e4 with respect to b1, we
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have:

r = y2a1
4 (y − 1) (x− 1)

2
(x+ y − 1)

2
r21 r2 r3, where

r1 = (xa2 + a1) , r2 = x3a1a3 − x3a22 + x2a1a2 − x2a1a3 + x2a2
2 + a1

2,

r3 = r30 + y r31, where

r30 = x7a1
2a3

2 − 4x7a1a2
2a3 + 4x7a2

4 − 2x6a1
2a2a3 − 3x6a1

2a3
2 + 4x6a1a2

3 +

12x6a1a2
2a3 − 12x6a2

4 − 2x5a1
3a3 + 5x5a1

2a2
2 + 6x5a1

2a2a3 + 3x5a1
2a3

2 −
12x5a1a2

3 − 12x5a1a2
2a3 + 12x5a2

4 + 2x4a1
3a2 + 6x4a1

3a3 − 15x4a1
2a2

2 −
6x4a1

2a2a3 − x4a12a32 + 12x4a1a2
3 + 4x4a1a2

2a3 − 4x4a2
4 + x3a1

4 − 6x3a1
3a2

−6x3a13a3 + 15x3a1
2a2

2 + 2x3a1
2a2a3 − 4x3a1a2

3 − 3x2a1
4 + 6x2a1

3a2 +

2x2a1
3a3 − 5x2a1

2a2
2 + 3xa1

4 − 2xa1
3a2 − a14,

r31 = 4x7a1a2
2a3 − 4x7a2

4 + 8x6a1
2a2a3 + x6a1

2a3
2 − 4x6a1a2

3 − 12x6a1a2
2a3 +

12x6a2
4 + 4x5a1

3a3 + 4x5a1
2a2

2 − 16x5a1
2a2a3 − 2x5a1

2a3
2 + 12x5a1a2

3 +

12x5a1a2
2a3 − 12x5a2

4 + 4x4a1
3a2 − 8x4a1

3a3 + 3x4a1
2a2

2 + 10x4a1
2a2a3 +

x4a1
2a3

2 − 12x4a1a2
3 − 4x4a1a2

2a3 + 4x4a2
4 + 2x3a1

3a2 + 6x3a1
3a3 −

11x3a1
2a2

2 − 2x3a1
2a2a3 + 4x3a1a2

3 + 3x2a1
4 − 6x2a1

3a2 − 2x2a1
3a3 +

5x2a1
2a2

2 − 3xa1
4 + 2xa1

3a2 + a1
4

Thus, we need to consider three cases:

Case r1 = 0. In this case a(x) = λ ln (x) + α. After the substitution of this expression in e1, we

obtain

e1 = λ (y − 1) (yb2 + b1) (xyb1 + λx− λ) = 0,

hence (yb2 + b1) = 0 and b(y) = µ ln(y) + β . Then we have c2 = 0 and

z = λ ln (x) + µ ln (y) + ν, λ µ 6= 0.

Case r2 = 0, r1 6= 0. If we solve r2 = 0 with respect to a3 and substitute this expression in

e2 = 0, we obtain:
b2
b1
y =

a2
a1

(x− 1) = λ = const.

We solve these di�erential equations with respect to a and b, then we substitute these expressions

in e1 = 0. And we obtain a contradiction.

Case r3 = 0, r1 6= 0, r2 6= 0. If r3 = 0, then r30 = r31 = 0. Thus, the resultant of r30 and r31
with respect to a3 is equal to zero and we have:

(x− 1)
6
(xa2 + a1)

4
x10a1

4
(
2x2a2 + 2 a1x− 2xa2 − a1

)8
= 0.

From the equation
(
2x2a2 + 2 a1x− 2xa2 − a1

)
= 0 we get

a2 = −1/2 a1 (2x− 1)

x (x− 1)
, a3 = 1/4

a1
(
8x2 − 8x+ 3

)
x2 (x− 1)

2 .

After substitution of these expressions into e2 = 0 we obtain 2xya1b2 − 2 yb1
2 + a1b1 = 0. Then

we have a1 = 2 yb1
2

2 xyb2+b1
.
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Let us substitute expressions for a1, a2, a3 into e1 = 0, then we extract the term without

x and equate it to zero. We obtain b1
2 (y − 1) = 0. The contradiction. We do not have such

solutions. Thus, we have

Proposition 6. The solutions of the Horn system of complexity one for Example 6 have the

form:

z = λ ln (x) + µ ln (y) + ν, λ µ 6= 0.

This example is from [1] (n. 8.1.9., p. 304). In this book there is the basis of 4-dimensional

space of solutions. It is possible to get our result from this description. Also we can note that in

this case the solutions of complexity one is the linear subspace of codimension one in the general

solutions space of this Horn system.

EXAMPLE 7. Let

P = (x+ 2y + p), Q = (x+ y − q),
R = (x+ 2y + p)(x+ y + p+ 1), S = (x+ y − q)(y − s).

For z = c(a(x) + b(y)) we have:

Gx z = x2a1c1 + 2xyb1c1 + pxc0 + xc1a1 + yc1b1 − qc0 = 0,

Gy z = x2ya1
2c2 + xy2a1b1c2 + pxya1c1 + x2ya2c1 + xya1b1c2 + y2b1

2c2 +

pxa1c1 + 3 pyb1c1 + qyb1c1 + sxa1c1 + syb1c1 + 2xya1c1 +

y2b2c1 + p2c0 − qsc0 + 3 yc1b1 + pc0 = 0.

Let f (n) be (f1, . . . , fn). After the elimination of c we obtain

e1(a
(2), b(2)) = a2b1px

3 − 2 a1b2px
2y − a1b1px2 + a2b1px

2 − a1b2pxy − a2b1qx2 +
2 a1b2qxy − b1a1px− b12py − a2b1qx+ a1b2qy − 2 b1

2qy = 0,

e2(a
(2), b(2)) = 0 is the sum of 79 monomials.

Thus, we obtain two expressions for b2: the �rst b2 = B21(a
(2), b1) and the second b2 =

B22(a
(2), b1). Then we have two new conditions: equality of both expressions and their in-

dependence of x. We obtain e3(a
(3), b1) = 0 (41 monomials) and e4(a

(3), b1) = 0 (98 monomials).

Here e3 is linear with respect to b1, and e4 is quadratic with respect to b1. If we express b1 from

e3 = 0, then we get b1 = B1(a
(3)). The condition (B1)

′
x = 0 has the form (p x − q) e5(a(4)) = 0

(e5 is the sum of 55 monomials).

Our calculation is the tree of cases.

Case 1: (px− q) 6= 0, e5 = 0.

If we substitute b1 = B1(a
(3)) into e4(a

(3), b1) = 0 we obtain ee4(a
(3)) = ee40(a

(3)) +

y ee41(a
(3)) = 0. Thus, we have ee40(a

(3)) = ee41(a
(3)) = 0, where ee40 consists of 489 mono-

mials and ee41 consists of 215 monomials. Substitution of b1 = B1(a
(3)) in B21(a

(2), b1) yields
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BB21(a
(3)). We can write (B1)

′
y = BB2 and we get e6 = e61 e62 = 0, where

e61 = x2a3 + 4 a2x+ xa3 + 2 a1 + 2 a2,

e62 = 2 p2x5a1a3 − 2 p2x5a2
2 + 2 p2x4a1a2 + 3 p2x4a1a3 − 3 p2x4a2

2 − 4 pqx4a1a3 +

4 pqx4a2
2 + 2 p2x3a1a2 + p2x3a1a3 − p2x3a22 − 4 pqx3a1a2 − 6 pqx3a1a3 +

6 pqx3a2
2 + 2 q2x3a1a3 − 2 q2x3a2

2 + a1
2p2x2 + p2x2a1a2 + 2 a1

2pqx2 −
4 pqx2a1a2 − 2 pqx2a1a3 + 2 pqx2a2

2 + 2 q2x2a1a2 + 3 q2x2a1a3 − 3 q2x2a2
2 +

2 pqxa1
2 − 2 pqxa1a2 + 2 q2xa1a2 + q2xa1a3 − q2xa22 + pqa1

2 + q2a1a2.

Case 1.1: e61 = 0, then a(x) = λ ln (x+ 1) + µ (ln (x)− ln (x+ 1)) + ν. Substitution of this a

in e3 = 0 yields(
2x4pλ+ 4x3pλ+ x2pλ− λx2q + x2pµ+ 2µx2q + 2µxq + µ q

)
×

(pyb1 + 2 qyb1 + λ q + pµ) = 0.

The set of coe�cients of the �rst factor has the form:

{µ q, 2λ p, 4λ p, 2µ q, λ p− λ q + pµ+ 2µ q} .

All of them can not vanish. Hence the second factor is zero.

Case 1.1.1: p+ 2q 6= 0. From (pyb1 + 2 qyb1 + λ q + pµ) = 0 we get

b(y) = −
(
λ q + µp

p+ 2 q

)
ln (y) + β.

Substitution of this a and b in e2 = 0 yields ee2 = 0, where ee2 is the polynomial of

degree 2 in (x, y), the coe�cients of which depend on (p, q, s, λ, µ). One of them equals

λ (p+ q + 1) (λ− 2µ).

Case 1.1.1.1.: (λ− 2µ) = 0. The analysis of coe�cients of ee2 shows us that ee2 = 0 is

impossible in this case.

Case 1.1.1.2.: p+ q + 1 = 0.

Case 1.1.1.2.1.: λ = µ. We have ee2 = 0. Then we have p = −1, q = 0. The solution has the

form z = ν (y/x).

Case 1.1.1.2.2.: λ = −µ p 6= 0. We have p = s = λ = 0, q = −1, µ 6= 0. The solution has the

form z = ν(y/x2).

Case 1.1.2: p = 2q 6= 0. From e4 = 0 we obtain b1 = B1(a
(2)). After substitution of this

expression in B21 we get BB21. From (B1)
′
y = BB21 we get g0(a

(2))+y g1(a
(2))+y2 g2(a

(2)) = 0

and hence g0(a
(2)) = g1(a

(2)) = g2(a
(2)) = 0. The resultant of g1(a

(2)) and g2(a
(2)) with respect

to a2 is some polynomial in x of degree 11. The value of this polynomial for x = 0 is (q − 1)6

and hence q = 1. Then we have

∀s r = −2
(
2 sx2 + sx− 2x2

)2 (−2x2 − 2x
)3
x 6= 0.

A contradiction. Solutions are absent.

Case 1.2: e62 = 0. Let us express a3 from this equation and substitute the result in e2 = 0.

We obtain ee2 = ee20(a
(3)) + y ee21(a

(3)) = 0, then

g1 =
(
−psx− qsx+ p2 + qp+ xp+ p

)
g3 = 0,

g2 =
(
xp2 + pqx+ x2p− qp+ 2xp− q2 − q

)
g3 = 0,

ãäå g =
(
2 px2a2 + 4 pxa1 + pxa2 − 2 qxa2 + pa1 − 2 qa1 − qa2

)
.
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Case 1.2.1.: g 6= 0. In this case all coe�cients of both factors must vanish. The set of these

coe�cients is:

{p (p+ q + 1) ,−ps− qs+ p, p, p (p+ q + 2) ,−q (p+ q + 1)} .

We see that p = 0, then s = 0 (q 6= 0) and q = −1. We have the solution z = ν(y/x2) (this

solution coincides with the solution of the case 1.1.1.2.2.).

Case 1.2.2.: g = 0. Let us express a2 from this equation and substitute the result in e62 = 0.

We obtain

2 p2x3 + 4 pqx3 + 6 pqx2 + 6 pqx+ pq − q2 = 0.

The set of coe�cients of this polynomial is:

{q (p− q) , 6 pq, 2 p (p+ 2 q)} .

The vanishing of all of them is impossible (px− q 6= 0).

Case 2: p = q = 0. The equation Gx(z) = 0 takes the form:

Gx z = x2a1 + 2xyb1 + xa1 + yb1 = 0.

Hence

a1
(x+ 1)

(2x+ 1)
= λ = b1 y, λ 6= 0 is constant.

And then we get

a(x) = λ(2x− ln(x)) + α, b(y) = λ ln(y) + β.

After elimination of c from

Gy z = x2ya1
2c2 + xy2a1b1c2 + x2ya2c1 + xya1b1c2 + y2b1

2c2 +

sxa1c1 + syb1c1 + 2xya1c1 + y2b2c1 + 3 yc1b1 = 0

for our a and b we get:

8 sx3y − 12 sx2y − 8x2y2 + 2 sxy + 4xy2 − 10xy − y2 + 4 y − 2 = 0.

for all (x, y). This is impossible for all s. A contradiction. Thus, we have:

Proposition 7. The solutions of the Horn system of complexity one for Example 7 exist in

two cases only:

(a) p = −1, q = 0, z = ν
y

x
,

(b) p = s = 0, q = −1, z = ν
y

x2
.

EXAMPLE 8. The Lauricella's functions are the subclass of the class of hypergeometric

functions [5], [6]. This is the solutions of the Lauricella system (some generalization of the
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hypergeometric Gauss equation). If number of the independent variables is two, this system is

the system of two equations for the funñtion z(x, y) of the form

Lx(z) = x (1− x) ∂2

∂x2
z (x, y) + (1− x) y ∂2

∂y∂x
z (x, y) +

(q − (1 + p1 + ρ)x)
∂

∂x
z (x, y)− p1y

∂

∂y
z (x, y)− p1ρ z (x, y) = 0,

Ly(z) = y (1− y) ∂
2

∂y2
z (x, y) + (1− y)x ∂2

∂y∂x
z (x, y) +

(q − (1 + p2 + ρ) y)
∂

∂y
z (x, y)− p2x

∂

∂x
z (x, y)− p2ρ z (x, y) = 0.

The parameters (p1, p2, ρ) are any complex numbers and q ∈ C \ {0,−1,−2, . . . }. Our goal is

to describe the solutions of the Lauricella system of complexity one (of kind z = c(a(x) + b(y)),

where (a, b, c) are not constant). In order to simplify our calculation we will assume that ρ = 0.

Thus, we have three complex parameters only (p1, p2, q). The Lauricella system for ρ = 0, z =

c(a(x) + b(y)) has the form:

Lx(z) = −x2a12c2 − yc2a1b1x− x2a2c1 + xa1
2c2 − xa1c1p1 +

yc2a1b1 − p1yc1b1 + qa1c1 − xa1c1 + xa2c1 = 0,

Ly(z) = −yc2a1b1x− y2b12c2 + xc2a1b1 − p2xc1a1 − y2b2c1 +
yb1

2c2 − yb1c1p2 + qb1c1 − yb1c1 + yb2c1 = 0.

Case 1. xa1 + yb1 = 0. We have

a(x) = −λ ln(x) + α, b(y) = λ ln(y) + β, λ 6= 0

and our equations have the form

−λ c1 (q − 1)

x
=
λ c1 (q − 1)

y
= 0.

The condition of solvability is q = 1 and we obtain z = c(y/x), where c(t) is any analytical

function.

Case 2. xa1 + yb1 6= 0. We can express c2/c1 from both equations. We have

c2/c1 = LC21(a
(2), b1) = LC22(a1, b

(2)) = 0.

The solvability conditions are: LC21 = LC22 and V (LC21) = 0. This conditions are

e1(a
(2), b(2)) = 0 (20 monomials) and e2(a

(3), b(2)) = 0 (39 monomials).

Case 2.1. −x2a2 + qa1 − xa1 + xa2 = 0. Thus,

a1 =
(x− 1)q−1

xq
, b1 y = −

(
x− 1

x

)q−1
.

Hence q = 1, a1 = 1/x and b1 = −1/y, and further xa1 + yb1 = 0. In this case it is impossible.

Case 2.2. −x2a2 + qa1 − xa1 + xa2 6= 0. The equations e1 = 0 and e2 = 0 are linear

with respect to b2. We have two expressions for b2: b2 = B21(a
(2), b1) and b2 = B22(a

(3), b1).

We get two conditions: B21 = B22 yields e3(a
(3), b1) = 0 (79 monomials), (B21)

′
x = 0 yields

e4(a
(3), b1) = 0 (36 monomials). e3 is cubic with respect to b1, e4 is quadratic with respect to
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b1. We can divide e3 by e2 with the remainder (as polynomials with respect to b1). We obtain

that the reminder is zero. Thus, we have:

−yb1 −
(
x2a2 + qa1 + xa1 − xa2 − a1

)
a1

xa2 + a1 − a2
= 0.

Hence

yb1 = λ = −
(
x2a2 + qa1 + xa1 − xa2 − a1

)
a1

xa2 + a1 − a2
.

And further we get

b(y) = λ ln(y) + β, a2 = −a1 (qa1 + xa1 + λ− a1)
x2a1 + λx− xa1 − λ

, λ 6= 0.

After substitution of these expressions in e1 = e2 = e3 = e4 = 0 we get ee1(a1) = ee2(a1) =

ee3(a1) = ee4(a1) = 0. The resultant of ee1 and ee2 with respect to a1 is a polynomial with

respect to (x, y). The coe�cient of x6y in this polynomial is (q − 1)4, hence q = 1. For such q

we have xa1 + yb1 = 0. In this case it's impossible. Thus, we have the following proposition.

Proposition 8. The solutions of the Lauricella system of complexity one for ρ = 0 exist in the

case q = 1 only. These solutions have the form:

z = c
(y
x

)
, where c(t) is any nonconstant analytical function.

It is possible that the additional computational e�orts would allow us to free ourselves from

the constraint ρ = 0.

3. Conclusion

Both (2) and (1) are equalities to zero of di�erential polynomials, which are the elements of the

di�erential ring R, the ring of di�erential polynomials with complex coe�cients and generators

(x, y, z, ∂x, ∂y) (and with obvious relations) [7], to which the �eld of fractions F corresponds.

The ring R is a classical object of di�erential algebra. We can look at the common zeros of a

system of di�erential-polynomial equations, i.e., at the solutions of these equations, from two

di�erent points of view. From a quite abstract algebraical point of view they are the elements

of the di�erential-algebraic closure of the �eld F . From the analytical point of view they are

analytic functions, which gives solutions to the system of di�erential equations. In R there is

the subring C[x, y], which is the commutative ring of the polynomials in (x, y). The set of the

common zeros of a system of polynomials is an a�ne algebraic subvariety of two-dimensional

space. This is the area of responsibility of algebraic geometry. If we move from C[x, y] to R, then
the object arise, which is quite analogous to an algebraic variety: the set of the common zeros of

a di�erential-polynomial system, which is a di�erential-algebraic manifold (DA-manifold). The

term is not stable, there are variants, e.g., di�ety [8]. From this point of view the discussed above

examples are examples of DA-manifolds, which are de�ned by three di�erential polynomials (two

of them are the Horn system, and the third is the de�ning equation of the �rst class). The Horn

systems from this point of view are not very interesting, the corresponding DA-manifold is a
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linear space. By adding the de�ning equation of the �rst class, we provide opportunities for a

larger diversity. Studying an algebraic variety, one usually pays attention to a series of natural

characteristics, namely: irreducible components, strati�cation of the points on the variety with

respect to the dimension of the tangent space and so on. In the study of DA-manifolds these

characteristics are also of interest. Nevertheless, there is a certain speci�cs.

For example, the dimension of the linear space of the solutions of system (2) can be both

�nite and in�nite. In the case when it is in�nite the question arise:

Question 9: (a) Under which condition the dimension of the intersection is �nite? (b)

If the dimension is �nite, how to estimate it? (c) How to estimate the number of irreducible

components?

DA-manifold de�ned by the equation d1(z) = 0 is a cone, and DA-manifold de�ned by a

Horn system is a linear space. However, when we speak about conic sections, we mean that the

cutting plane does not necessary go through the vertex of the cone, as it is in our examples. We

can easily avoid this limitation. Let z0(x, y) be an analytic function of complexity one, which

is a solution of the Horn system, i.e., Gx(z0) = Gy(z0) = 0. Then we can consider the a�ne

subspace, which consists of the functions of the form {z = z0 + δz}, where δz is a solution of the
Horn system, i.e., Gx(δz) = Gy(δz) = 0, and construct its intersection with the cone Cl1, which

is certainly nonempty (there z0 lies).

Some of the discussed examples of Horn systems are systems with parameters. This feature

can be easily interpreted with the help of di�erential algebra. In the de�nition of the di�erential

ring R we should include these parameters in the �eld of constants.

Next, note that all our considerations can be adapted to functions of larger number of

variables. The functions of complexity one in n variables are analytic functions of the form

z(x1, . . . , xn) = c(a1(x1) + · · · + an(xn)), where (a1, . . . , an, c) are functions of one variable.

The class of such functions, as in the case of two variables, is de�ned by a set of di�erential

polynomials.

The consideration of examples with parameters allows us to note that in all discussed situ-

ations for the existence of solutions of complexity one there are necessarily restrictions on the

parameters. I.e., solutions exist only for a proper algebraic subset of the space of parameters.

Question 10: Do there exist holonomic Horn systems with parameters, such that there are

solutions of complexity one for all values of parameters?

Let a Horn system with parameters be given. And let solutions of complexity not greater

than a �xed n of this system exist only under some nontrivial analytic conditions (for all natural

n). Then it is easy to show that all solutions for generic values of parameters (outside solutions

of some enumerable system of analytic equations) have in�nite complexity. On the other hand,

if we assume that for a Horn system with parameters all solutions are of �nite complexity, then

there exists a number N , such that all solutions for all values of parameters have complexity not

greater than N .

The author is grateful to A.K.Tsikh and T.M.Sadykov for the discussion of this paper.
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Î ãèïåðãåîìåòðè÷åñêèõ ôóíêöèÿõ äâóõ ïåðåìåííûõ
ñëîæíîñòè îäèí

Âàëåðèé Ê.Áåëîøàïêà

Äëÿ ñåðèè ïðèìåðîâ ñèñòåì Ãîðíà è ñèñòåìû Ëàóðè÷åëëû äëÿ ôóíêöèé äâóõ ïåðåìåííûõ äàíî

îïèñàíèå ðåøåíèé, èìåþùèõ àíàëèòè÷åñêóþ ñëîæíîñòü îäèí. Ñòàâèòñÿ ðÿä âîïðîñîâ.

Êëþ÷åâûå ñëîâà: àíàëèòè÷åñêàÿ ñëîæíîñòü, ãèïåðãåîìåòðè÷åñêèå ôóíêöèè, ñèñòåìà Ãîðíà, ñè-

ñòåìà Ëàóðè÷åëëû, äèôôåðåíöèàëüíîå êîëüöî.
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