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1. Introduction

The class of hypergeometric functions (HG-functions) of several variables is of considerable
interest. It continues to be a subject of great attention [1]. On the other hand, there is the theory
of analytical complexity, which is orientated at the study of questions about representability of
functions of several variables with the help of superpositions of functions of lesser number of
variables. In particular, the questions of representability of functions of two variables with the
help of functions of one variable [2]. In the context of this theory, the simplest functions of two
variables are the functions of complexity one (the functions of one variable have complexity zero).
These are analytic functions of variables (z,y), which can be locally represented as z(z,y) =
c(a(x) + b(y)) (a, b, ¢ are nonconstant analytic functions of one variable). These functions are
of special interest. Firstly, they are the functions, which have the stabilizer of the maximal
dimension in the gauge group (the dimension is equal to three) [3]. Secondly, if we consider
z(x,y) as a function of a 3-web on the plane, then such web is equivalent to the hexagonal web
if and only if z has the specified form [4].

The set of all such functions is, except for the functions of one variable, the set of analytic
functions, which is the set of the solutions of a differential polynomial of order three. This
polynomial is exactly the numerator of the following differential fraction: (In(z/ Z.vl;));,y’ i.e., the
defining condition for the functions of complexity one has the form:

01(2) = 242 (el 7 = ) + (Pl = (V) =0, s, £0. (1)

Note that the class of functions of complexity one includes all four arithmetic operations. If we
remove the inequality, which excludes the functions of one variable, we obtain C1' = {d;(z) = 0},
which is the class of the functions of complexity not greater than one.

We think that the theory of hypergeometric functions of several (in particular, of two) vari-
ables differs qualitatively from the theory of hypergeometric functions of one variable by the

*vkb@strogino.ru
© Siberian Federal University. All rights reserved

— 258 -



Journal of Siberian Federal University. Mathematics & Physics 2009, 2(3), 258-270

fact that the class of hypergeometric functions of several variables is in a sense too large and
the problem of the choice of a narrower class of the most interesting HG-functions arise. Which
HG-functions are the most interesting? No doubt is it possible to give different answers to this
question. For the functions of two variables we offer the following answer:

Good HG-functions are the HG-functions of complezity one.

We interpret a HG-function of two variables (Examples 1-7) as, following [1], a solution of a Horn
system. To define the Horn system for functions of the variables (z,y), we need four polynomials
P, Q,R,S in two variables. Let X = x a%, Y=y a% be the homogeneous partial differential
operators. Then the Horn system corresponding to the given four polynomials is the system of
two linear differential equations with nonconstant coefficients with respect to the function z(z, y)
of the form

G,z=(PX,Y)-QX,Y)) z=0,
Gyz=WR(X,)Y)-S(X,Y))z=0. (2)

What is the set of all solutions of complexity one of this system? The aim of this paper
is to give the explicit description of the solutions of complexity one for a series of examples of
systems of the form (2). Almost all examples are from [1]. With the growth of degrees of the
defining equations and the number of free parameters the problem of the explicit description of
the space of solutions quickly becomes computationally difficult even for polynomials of degree
not greater than two. However, one can hope that the consideration of these examples will allow
to formulate questions for the further study (some of them are given at the end of the paper).

In the theory of HG-functions there is an established approach, which suggests that an im-
portant characteristic of the Horn system is its holonomicity. The holonomicity of the system, in
particular, guarantees the finite-dimensionality of the space of solutions. In our considerations
we do not require holonomicity.

Since the Horn system is a system of linear differential equations, then the set of its solutions
is a linear space. Equation (1) is not linear. From the geometric point of view, the set of its
solutions is an infinite-dimensional cone. In fact, the transformation (z(z,y) — Az(x,y)) maps
the solutions in solutions. Hence, we can understand our question as the question about the
construction of the intersection of the cone and the linear space.

Further we will need the following simple observation. Let two nonconstant functions a(x)
and b(y) are given. For the existence of a function ¢(¢) for the function w(z,y), such that in a
neighbourhood of a generic point there is a local representation of the form w = ¢(a(z) + b(y)),
it is necessary and sufficient that

1 0 1 0
Ve = (e g ~ i ay) ) = ®)

The concrete computations were held with the use of the Maple system.
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2. A Set of Examples
EXAMPLE 1. Let
P=2* Q=qz+q@y, R=y* S=siz+sy, qg@sis#0.

Then the system (2) for z = c(a(z) + b(y)) takes the form (low indexes are numbers of
derivatives)

3

2 3 2
Gy z=1x"a1"co + x°azc1 + x°a1c1 — qrxciar — gayciby =0,

Gyz= y3b12co 4+ yPboct — sizerar + yPbier — sayciby = 0.

We can express the ratio c¢o/c; from first equation and from second equation. We get two
relations: the first is the equality of the both expressions, the second is the result of action of
operator V on each of them. Thus,

e; = x3y3a12b2 — x3y3a2b12 —zta®s; + x3y2a12b1 — m3ya12b182 —
2 3 2 3 2 4; 3
2%y a1bi” + 2y arbi“q1 +y~b1°q2 = 0,
— b 4 2 2b 4 b 3 _ b 2 2b .
€2 = —a3a101x” +2a2°01" + a2a101® a2010127¢1 — a17022Yq2

2 a2b12xqu + a1 2b12? — 2a%bixqn — a1 ’bizge — 3a1b12yqz =0.

The expressions e; and es are linear by bs. The coefficients of by are not idenitcally zero. It is
possible to express by from e; = 0 and from ey = 0. We get two relations: the first is the equality
of the both expressions, the second is the result of the action of operator 9/, on each of them.
Thus,

e3 = 25y%arasb; — 225y%as%by — 2%y aragby + 2ty arasbiqr +

3a3y3asb1 g — xty?a by + 2tarqasy + 22%y%a by +

23yar®bigasy + 427yt arbi’qe — zyParbi’qige — y'hi Pee® =0,

eq = azarb’zty® — 2a2%b1 %2 y® + axa1®2%s1 — azaibi*zPy? + asarbi2?yPer +

2asb1’zytqo + ar*ats1 — a1?b1 2%y + 201701 *2yP g + 3aibiPytge = 0.

The expressions e3 and e4 are quadratic by bs. The necessary condition of solvability is equality
to zero of the resultant of es and e4 with respect to b;. This resultant has the form

11,11 4 2
Ty a1 q2 slr(x,y7a17a2,a3),

hence, r = 0. And r is the polynomial of degree four with respect to y. The coefficient in r of
y* is equal to
—2%a1°¢2%89% (zag + ay) (2zay + 3a1)2 .

Thus, it is enough to consider two cases:

the first is (2zaz2 +3a1) = 0, and second is (zaz +a1) = 0. We can solve these differential
equations. In the first case we get a; = k/x%/?
we substitute the first solution in r, we can see that the equation » = 0 is impossible. If we
substitute the second solution in r, we have

and in the second case we get a; = k/x. If

ksngsl ((hsz - (I281)

r=—
7
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And we see that » = 0 iff (g1,92) = A (s1,82), A # 0. We can substitute a; = k/z in e3 = 0 and
we have ybigz + kg1 = 0. In such case we have a(z) + b(y) = k In(z) — k L In(y) + const and
z = c(y/z®), where oo = ga/q1 = s2/s1. Then we can substitute such z in G, z = G,z = 0 and
we get:

d'(t)t+ () = 0, hence ¢(t) = A In(t) + p. Thus, we have

Proposition 1. The solutions of the Horn system of complexity one (i.e. of the kind
z = c(a(xz) + b(y)), a,b,c are nonconstant) for Example 1 exist iff q2/q1 = s2/s1 = a. In this
case the solutions have the form

Z:Aln(%)+u7 a#0, A#0.
xT

EXAMPLE 2. Let
P=x+1, Q=1, R=y+1, S=1.

Then the system (2) for z = c(a(z) + b(y)) takes the form

2

Gy z=x"a1c1 +xc0 — o = 0, Gyz:y2b101+yco—60:0.

Then we have

ﬂ,fx_lffy_lfl
co  x22a1  y?by N
Thus,
r—1)A —1)A
WZ*L‘TLV h:*@‘7L=
T Y

If we substitute this expressions in G, = 0 and G, = 0, we get
—(z-1)(Ae1—co)=—(wy—1)(Aexw — o) =0.
Hence c(t) = exp(—t/A\) u z = p(xy exp(1/z + 1/y)) L.

Proposition 2. The solutions of the Horn system of complexity one for Example 2 have the

form

I
p=——3—, p#0.
vy exp(y + ;)

EXAMPLE 3. Let

If 2 = c(a(z) + b(y)) we have
Gy z=—zcia1 +xcog+co =0, Gyz=—ycibi +yco+co=0.
After elimination of ¢ we obtain

—xary + ybrx — xaq +yby =0, asz? + asx + ay = 0.
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Hence
a(x)z%—k)\ln(x)-i-ln(a), b(y):)\ln(y)—i-g—i-ln(ﬂ), A#0.

Then we get the equation on function ¢. When we will solve this equation, we will obtain the
following proposition.

Proposition 3. The solutions of the Horn system of complexity one for Example 8 have the
form
z=paye™TY 40
EXAMPLE 4. Let
P=2%y+1, Q=1 R=y+1, S=1.
For z = ¢(a(z) + b(y)) we have

Gy z = 23ya bics + 23yasbico + x2yarbica + xco — ¢ = 0,

Gyz= y2bicy + yeg — co = 0.

From the second equation we get ¢; = (—boy? — yby + bay + 2b1) co. After differentiation of this
equation with respect to x we obtain such expressions for ¢ and c3. After the substitution of
these expressions in G,z = 0 we get:

1 = 23ytash, — 22y%a1? — 2232 a0by + 22ytarby + xy5b12 +32%y%a® +

x3a2y2b1 — 2x2y3a1b1 — y5b12 — 3:173ya12 + x2a1y2b1 + 23012 = 0.

From V(c1/co) = 0 we get e = —boy? —yby +bay+2b; = 0. After differentiation of [ with respect
to y we obtain:

(l); = 23y agby + 4233 a2b1 — 2232 a0bs + 22ytarby + 2 xy°b1be — 323y2as? —
6m3a2y2b1 + x3a2y2b2 + 4x2y3a1b1 -2 m2y3a1b2 +5 $y4b12 — 2y5b1b2 +

3, 2 3 a2 9 2 9y ¢ 432 o 3 2 2 _
6 x°ya1” 4+ 2x°asyby — 6 x°a1y“b1 + x°a1y by — Hy~by 3z°a1” 4+ 2x%a1yby = 0.

The resultant of (I);, and e with respect to by equals

ry = 3x3y4a2b1 — 3x3y3a12 — 6x3y3a2b1 + 3x2y4a1b1 + 3xy5b12 + 9x3y2a12 +
3x3a2y2b1 — 6x2y3a1b1 — xy4b12 — 3y5b12 — 9$3ya12 + 3x2a1y2b1 +
y*01? +32%a,2 = 0.

The resultant of 1 and [ with respect to b, equals
re = 2%%a* (y — 1) (z — 1) = 0.
But 75 is not equal to zero identically. Thus, we have:
Proposition 4. The solutions of the Horn system of complexity one for Example / do not ezist.
EXAMPLE 5. Let

P=x+y—-p, Q=x+q, R=x+y—-p, S=y-+s.
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Case p = 0.

2

G,z =x%a1c1 + xybici — xaycy — qeg = 0,

Gy z = zyaic: + y2b161 —ybicy — scp = 0.

From c¢; # 0 we get ¢ # 0 and s # 0. After elimination of ¢ we obtain

2

e1 = qryal + qy’by — sx’a; — sxyby — qyby + sxa; = 0,

€y — —x2a2b1 + xyalbg - zalbl + xa2b1 - yb12 + a1b1 =0.
From e; = 0 we get b;. b; does not depend on z, hence

€3 = —aquJUy2 + 2 agqsty - a282x3 + a2q2$y — a1q2y2 — a2q3x2 + 2a1qsxy —
a2qsSTy — alstQ + a252x2 + a1q2y —2a19s% + azqsx — a1qsy + a1qs = 0.
This expression is quadratic in y. Write that the coefficient of y? is equal to zero, we get

q? (zag +ay) = 0. Hence a(z) = X In(z) + « and s = —q, b(y) = =\ In(y) + B. As a result we
get z = p(y/x)?.

Case p # 0.
We have

G,z = 22ayc1 + zybicy — preg — xciar — qeg = 0,

Gyz = zyaicy + y2blcl — pyco — yc1by — scp = 0.

By elimination of ¢ we get

e1 = pxryay — pryby + qryal + qy2b1 — sz

a1 — sxyby — qyby + sra; = 0,
ey = —asbipx® + arbapz?y + agbi1pr? — ash1qx® + a1baqry — arbiqr + asbiqr —
b1%qy + a1big = 0.
Let us express by from es = 0 and b; from e; = 0. We have two conditions. The first: (b1), =0
and the second: (b1);, = b. After elimination the nonzero factors we can see that both conditions
coincide and have the form

e3 = agp’x’y + azpqr’y — agpqry® — agpsa® + agpsz®y — axq*ry’ + 2 azgsry —
a25°x® + aspqry — ar1pqy® — arpsa® + aspsa® + axq’xy — a14*y’ — asqsa® +
2a1qsTy — a2qsTy — a152x2 + a232x2 + a1pqy + a1q2y —2a1q9sx +

a2qsr — a1qsy + a1qs = 0.
This expression is quadratic in y. Write that the coefficient of 4?2 is equal zero, we get:

q(raz +a1)(p+q) =0.

Casep #0, g =0.

Then ez has the form z? (p + s) (pyaz — swaz — sa; + saz). We have two opportunities for
this expression to be equal to zero: either s = —p or ay = s = 0. The first case is impossible,
because in this case e; = praj (x +y — 1). In the second case a(z) = Az + «, bly) = Ay + S.
Thus, we get:

z=p(l—(z+y)?’ ¢q=5=0,p#0.
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Case p #0, ¢ = —p, q # 0. Then e3 is divisible by s. But s = 0 is impossible, if e; = 0.
Thus, we have s = —p and:

(D,

Y

Casep #0, ¢ #0,(p+q) #0 (raz+a;) =0. Then a(x) = A In(z) + a. From ez = 0 we
get s = —(p+¢) and from e; = 0 we get by = —A(p+4q)/qy, b(y) = —A(p+4q)/q In(y) + 5. We

have:
p+q

=M ) 5:7(p+Q)7q7é07(p+q)7£0

x4

Proposition 5. The solutions of the Horn system of complexity one for Example 5 exist in
three cases only:

_ _ K
(a)q#07p+Q#O7S_ (p+Q)7 Z_qus7

L) p#0,s=q=0, z=p(1-(zx+y))",

(C)SZQZ—P#OszAL((x_l;S/_l)—l),

EXAMPLE 6. Let
P=zxz(z+y), Q=2° R=ylz+y), S=1vy°
For z = c(a(z) + b(y)) we have:

G,z = 22ay%cs + zya1bics + z2asc, — TC2a12 + TALCL — TCLAY — CLA] = 0,

Gy z = zyarbica + y?bi°ca + y?baci — yeabi® + ybicr — yeibs — c1by = 0.
After elimination of ¢ we get

e1 = —z yajasb, + z?y%ai%by — x2y2a2b12 + zyPaibiby — 22ya, %by +

x2ya1a2b1 + xzya2b12 — xy2a12b2 — xy2a1b1b2 + xy2a2b12 —2%a%b +

zyay?by — wyash® + y?aib® + ra?by — yayby® =0,

€y = —a3a12b1x4 +2a5%a1b12t — a2a12b2x3y — a3a1b12x3y + a22612x3y +
2a3a1°b12° — das’arbix® — a12bazy + asar 2boz’y — a2a1b12x2y + a3a1b12x2y -
a22b12x2y — asay?byz? — aza?biz? + 2asa by + a13b2xy —

a13blx —+ (120,12[)1% - CL12b12y + a13b1 =0.
And we obtain two expression for b;. Then we have two conditions: equality of both expressions

and their independence of . We obtain es(aq, a9, a3, b1) = es(ai, as,as,b1) = 0 (e3 contains 43
monomials, e4 contains 45 monomials). If r is the resultant of ez and e4 with respect to by, we
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have:

r=y?a* (y—1)(z— 1)2 (x+y-— 1)2 rf ro T3, Where

3 3 2 2 2 2 2 2
r1 = (zag + a1), re = r°aras — v as” + raras — x a1a3z + x°a” + a1,

r3 =7r30 + Y3, where

2asas — 32%1%a3? + 42%a1a0® +

2a2a3 + 3$5(112(132 —

r3g = x7a12a32 — 4x7a1a22a3 + 4x7a24 — 2x6a1
12 x6a1a22a3 —12 :c6a24 — 2x5a13a3 + 5z5a12a22 + 6:175a1
122%a1a9° — 12 x5a1a22a3 +12 x5a24 + 2x4a13a2 + 6x4a13a3 —15 x4a12a22 —

6 2%aiasas — vtaras? + 12 2% a1a9® + 42t ara0%as — 4xtas* + 2301t — 6 23a13as
—62%a1%a3 + 15 2%a1%a2? + 2 2%a1%azas — 4 23a1a2> — 3221t + 6 2%a13as +

3 3 4

22%a, as — 52%a1%a2% + 3za1t — 2za13as — ay ,

r31 = 4x7a1a22a3 —4z7ax* + 825a,%a0a3 + 25a1%a3% — 42%a1a2> — 12250105203 +

122%a5* + 42%a,3a5 + 42°a1%a5% — 16 2°a12asas — 22°a1%a3 + 12 2%a1a0° +

12 x5a1a22a3 —12 :r5a24 + 4x4a13a2 — 8x4a13a3 + 3x4a12a22 + 10 m4a12
x4a12a32 —12 x4a1a23 — 4x4a1a22a3 + 41’4(124 + 2x3a13a2 + 613a13a3 —

2 3

aza3 +

11z3%a1%as2 — 22304 asas + 423a1a9° + 3x2a14 —6z%a13as — 2x2a13a3 +

5 x2a12a22 — 3a:a14 + 2xa13a2 + a14

Thus, we need to consider three cases:
Case 1 = 0. In this case a(z) = X In(z) + «. After the substitution of this expression in e, we
obtain

e1=A(y—1)(yba+b1) (zyby + Az — ) =0,

hence (yba + b1) = 0 and b(y) = p In(y) + S . Then we have ¢; = 0 and
z=AIn(@)+pln(y)+v, Au#0.

Case 1o = 0, 11 # 0. If we solve 7o = 0 with respect to as and substitute this expression in
es = 0, we obtain:
bg as
—y=—(x—1)=)\=const.
s (z—1)
We solve these differential equations with respect to a and b, then we substitute these expressions
in e; = 0. And we obtain a contradiction.
Casers =0, 11 #0, ro #0. If r3 = 0, then r3g = 731 = 0. Thus, the resultant of r3y and 731

with respect to a3 is equal to zero and we have:
(x — 1)6 (zas + a1)4 20,4 (2 z2as + 2a12 — 2xas — al)s =0.
From the equation (222%as +2a12 — 2za; — a1) = 0 we get

ai (8:1:2 —8$L'+3)

22 (z —1)°

22z —1
a2:—1/2a;( I )

W, as = 1/4

After substitution of these expressions into es = 0 we obtain 2 zyaibs — 2 yl)12 4+ a1b;y = 0. Then
ybi?

we have ayp = 2 W
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Let us substitute expressions for a1, a9, a3 into e; = 0, then we extract the term without
z and equate it to zero. We obtain b2 (y — 1) = 0. The contradiction. We do not have such
solutions. Thus, we have

Proposition 6. The solutions of the Horn system of complexity one for Example 6 have the
form:

z=AIn(x)+pln(y)+v, Ap#0.

This example is from [1] (n. 8.1.9., p. 304). In this book there is the basis of 4-dimensional
space of solutions. It is possible to get our result from this description. Also we can note that in
this case the solutions of complexity one is the linear subspace of codimension one in the general
solutions space of this Horn system.

EXAMPLE 7. Let

P=(x+2y+p), Q=(@+y—2q),
R=@+2y+p)(z+y+p+1), S=@+y—q)(y—s).

For z = ¢(a(z) + b(y)) we have:

G,z = z2arc1 + 2xybicy + prcy + xeray + yerby — geg = 0,

Gyz= z?ya %o + zyaibica + pryaici + 2 yascy + xyaibica + y2b1202 +
praicy + 3pybicy + qybicy + sxaicy + sybicr + 2xyaicr +

y?bact + p°co — gsco + 3yeiby + peg = 0.

Let f( be (f1,..., fn). After the elimination of ¢ we obtain

el(a(z), b(2)) = agb1px® — 2a1bapr®y — a1bipr? + asbi1pr? — a1bopry — ashiqx® +
2 a1baqay — brarpx — bi’py — asbiqx + arbaqy — 2b1%qy =0,

e2(a?,b) =0 is the sum of 79 monomials.

Thus, we obtain two expressions for by: the first by = Boi(al®, b;) and the second by =
Bzg(a@),bl). Then we have two new conditions: equality of both expressions and their in-
dependence of . We obtain e3(a®,b;) = 0 (41 monomials) and e4(a®®,b;) = 0 (98 monomials).
Here ej3 is linear with respect to by, and e4 is quadratic with respect to b;. If we express by from
ez = 0, then we get by = B1(a®). The condition (B;), = 0 has the form (pz — q) e5(a'®) = 0
(e5 is the sum of 55 monomials).

Our calculation is the tree of cases.

Case 1: (px —q) #0, e5 = 0.

If we substitute by = Bi(a®) into e (a®,b;) = 0 we obtain eeq(al®) = eeqo(a®) +
yee41(a(3)) = 0. Thus, we have ee4o(a(3)) = eeyq (a(3)) = 0, where eeyq consists of 489 mono-
mials and eey; consists of 215 monomials. Substitution of b, = By (a®) in By (a®,b,) yields
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BBy;(a®). We can write (Bl); = BBy and we get eg = eg1 €62 = 0, where

egl = ;v2a3 +4dasx+ xas+2a1 + 2as,
g2 = 2p2x5a1a3 72p Z° a2 +2p z? a1a2 +3p x? aias — 3p z? as f4pqx4a1a3+
Apgrtas® + 2p*2taras + pPrlaras — pPrlas? — Apgraias — 6 pgraias +
6pqx as? +2q zdajas — 2q z2ay +a12p2x2+p z2ai1as + 2a1? pqm —
4pqw aias —2pqm a1a3+2pqx as? +2q T a1a2—|—3q z2aia; —3q z2as? +
2pqrar”® — 2pqraras + 2 ¢*zaras + ¢*raras — ¢*was” + pgar® + ¢*aras.
Case 1.1: eg1 = 0, then a(x) = Aln(z+ 1)+ u (In(x) —In(z + 1)) + v. Substitution of this a
in eg = 0 yields
(22pA + 42°pA + 2%pA — A2Pq + 2®pp + 2 pa’q + 2 pag + pg) x
(pyb1 +2qyb1 + A g+ pu) = 0.

The set of coefficients of the first factor has the form:

{a,2Xp,4Xp,2ug, Ap—Xqg+pu+2pq}.

All of them can not vanish. Hence the second factor is zero.
Case 1.1.1: p+ 2q # 0. From (pyb; + 2 qyby + Aq + pu) = 0 we get

) =~ (152 ) )+

Substitution of this @ and b in e = 0 yields ee; = 0, where ees is the polynomial of
degree 2 in (x,y), the coefficients of which depend on (p,q,s, A, u). One of them equals
Ap+a+1)(A=2p).

Case 1.1.1.1.: (A—2pu) = 0. The analysis of coefficients of ees shows us that ees = 0 is
impossible in this case.

Case 1.1.1.2.: p+q+1=0.

Case 1.1.1.2.1.: X = p. We have ees = 0. Then we have p = —1, ¢ = 0. The solution has the
form z = v (y/x).
Case 1.1.1.2.2.: A= —up # 0. Wehave p=s= A =0, ¢ = —1, u # 0. The solution has the
form z = v(y/z?).

Case 1.1.2: p = 2q # 0. From ey = 0 we obtain b; = Bl(a(z)). After substitution of this
expression in Bg; we get BBo;. From (Bl); = BBoy; we get go(a®)+yg1(a®)+9% g2(a®) =0
and hence go(a®) = g1(a®) = go(a?) = 0. The resultant of g;(a(?) and g2(a'?) with respect
to as is some polynomial in z of degree 11. The value of this polynomial for z = 0 is (¢ — 1)°
and hence ¢ = 1. Then we have

Vs r= -2 (28m2+sx—2x2)2(—2332—2x)3x7é0.

A contradiction. Solutions are absent.
Case 1.2: ega = 0. Let us express agz from this equation and substitute the result in e; = 0.
We obtain ee; = eeqq(a®) + yeeqr (a®) = 0, then
g1 = (—psz —gsz +p° +qp+ap+p) g° =0,
g2 = (zp* + pgz + 2’p —qp + 22p — > — q) g° =0,
rIe g = (2px2a2 + 4 pxay + pras — 2qras + pa; — 2qa; — qag) .
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Case 1.2.1.: g # 0. In this case all coefficients of both factors must vanish. The set of these
coefficients is:

{plp+q+1),—ps—qgs+p,p,p(p+q+2),—q(p+qg+1)}.

We see that p = 0, then s = 0 (¢ # 0) and ¢ = —1. We have the solution z = v(y/2?) (this
solution coincides with the solution of the case 1.1.1.2.2.).

Case 1.2.2.: g = 0. Let us express ag from this equation and substitute the result in ego = 0.
We obtain

2?2 + 4 pgz® + 6 pgz® + 6 pgx + pqg — ¢*> = 0.
The set of coefficients of this polynomial is:
{a(p—q).6pg,2p(p+2q)}.

The vanishing of all of them is impossible (pz — ¢ # 0).
Case 2: p=q = 0. The equation G;(z) = 0 takes the form:

Gy 2z =x%a1 + 2xyby + xa; + yby = 0.
Hence

(x+1)

aq m =)= bl Y, A 7é 0 is constant.

And then we get
a(z) = A(2z — In(z)) + o, b(y) = A In(y) + B.

After elimination of ¢ from

Gyz= m2ya1202 + acy2a1b162 + x2ya201 + xya1bico + y2b12cz +

sraicy + sybicy + 2xyaicy + y2b201 +3yc1by =0
for our a and b we get:
8saxdy —12sa?y — 8x%y? + 2szy +4ay® —10ay —y> +4y —2=0.
for all (z,y). This is impossible for all s. A contradiction. Thus, we have:

Proposition 7. The solutions of the Horn system of complexity one for Example 7 exist in
two cases only:

EXAMPLE 8. The Lauricella’s functions are the subclass of the class of hypergeometric
functions [5], [6]. This is the solutions of the Lauricella system (some generalization of the
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hypergeometric Gauss equation). If number of the independent variables is two, this system is
the system of two equations for the function z(z,y) of the form

0? 0?
Ly(2)=2(1-x) wz(@’,y) + (1 - x)ymz (w,y) +

0 0
(q— (1 +p1+p) ) e (z,v) — Py (z,y) —p1pz(z,y) =0,
0? 0?
Ly(z)=y(1—-y) @Z(x,y) +(1— y)xmz (x,y)+

0 0
(q—1+p2+p)y) a° (z,y) — P2ty oz (x,y) —p2pz(x,y) =0.

The parameters (p1,p2, p) are any complex numbers and ¢ € C\ {0,—1,-2,...}. Our goal is
to describe the solutions of the Lauricella system of complexity one (of kind z = ¢(a(z) 4+ b(y)),
where (a,b,¢) are not constant). In order to simplify our calculation we will assume that p = 0.
Thus, we have three complex parameters only (p1,p2,q). The Lauricella system for p = 0, z =
c(a(z) + b(y)) has the form:

L.(2) = —22a1%co — yesarbrx — x2aser + xaics — zareipr +
yCQCllbl — p1y61b1 + qaijcy —xaicy + xragcty = O,
Ly(z) = —ycparbix — y?b1%co + xegarby — paweiar — yPbacy +

ybi%co — ybicipa + gbicy — ybier + ybacy = 0.
Case 1. xay + yb; = 0. We have
a() = -Aln(@)+a, by) = AIn(y) + 8, A#0

and our equations have the form

_)\01 (g—1) _ Aep(g—1)
x Yy

=0.

The condition of solvability is ¢ = 1 and we obtain z = ¢(y/x), where c(t) is any analytical
function.
Case 2. xay + yby # 0. We can express cz/c; from both equations. We have

62/61 = LCQl(a(2)7 bl) = LCQQ((Il, b(Z)) = O

The solvability conditions are: LCs; = LCs and V(LCs) = 0. This conditions are
e1(a®, b)) = 0 (20 monomials) and e3(a®, b)) = 0 (39 monomials).
Case 2.1. —x%as + qa1 — za1 + zas = 0. Thus,

x—1)171 z—1\""!
alz( ) ) bly:_< T > .

x4

Hence ¢ =1, a; = 1/x and b; = —1/y, and further xa; + yb; = 0. In this case it is impossible.

Case 2.2. —z2ay + qa; — xay + zas # 0. The equations e; = 0 and e; = 0 are linear
with respect to by. We have two expressions for by: by = Bz1(a(2),b1) and by = Bzz(a(?’),bl).
We get two conditions: Bs; = Bas yields 63(a(3),b1) = 0 (79 monomials), (Ba1),, = 0 yields
e4(a®,b;) = 0 (36 monomials). es is cubic with respect to by, e4 is quadratic with respect to
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b1. We can divide es by ey with the remainder (as polynomials with respect to by). We obtain
that the reminder is zero. Thus, we have:
(x2a2 +qa1 +xa; — xras — al) a1

—yb, — =0.
e Tas + ap — as

Hence )
(x as + qay + xra; — xaz — al) ay

b :)\:—
¥ xTas + ap — as

And further we get

_a (qa1 + a1 + A — ay)
2a1 + N —xa; — A

b(y) = An(y) + B, a2 = L A£D0.

After substitution of these expressions in e; = es = e3 = ¢4 = 0 we get eei(a;) = ees(ay) =
eeg(ar) = eeq(ar) = 0. The resultant of ee; and ees with respect to aq is a polynomial with
respect to (z,%). The coefficient of 2%y in this polynomial is (¢ — 1)%, hence ¢ = 1. For such ¢
we have xa; + yb; = 0. In this case it’s impossible. Thus, we have the following proposition.

Proposition 8. The solutions of the Lauricella system of complexity one for p = 0 exist in the
case ¢ =1 only. These solutions have the form:

z=c (ﬂ) , where ¢(t) is any nonconstant analytical function.
x

It is possible that the additional computational efforts would allow us to free ourselves from
the constraint p = 0.

3. Conclusion

Both (2) and (1) are equalities to zero of differential polynomials, which are the elements of the
differential ring R, the ring of differential polynomials with complex coefficients and generators
(z,y,2,0y,0,) (and with obvious relations) [7], to which the field of fractions F corresponds.
The ring R is a classical object of differential algebra. We can look at the common zeros of a
system of differential-polynomial equations, i.e., at the solutions of these equations, from two
different points of view. From a quite abstract algebraical point of view they are the elements
of the differential-algebraic closure of the field 7. From the analytical point of view they are
analytic functions, which gives solutions to the system of differential equations. In R there is
the subring C[xz,y], which is the commutative ring of the polynomials in (x,y). The set of the
common zeros of a system of polynomials is an affine algebraic subvariety of two-dimensional
space. This is the area of responsibility of algebraic geometry. If we move from Clz, y] to R, then
the object arise, which is quite analogous to an algebraic variety: the set of the common zeros of
a differential-polynomial system, which is a differential-algebraic manifold (DA-manifold). The
term is not stable, there are variants, e.g., diffiety [8]. From this point of view the discussed above
examples are examples of DA-manifolds, which are defined by three differential polynomials (two
of them are the Horn system, and the third is the defining equation of the first class). The Horn
systems from this point of view are not very interesting, the corresponding DA-manifold is a
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linear space. By adding the defining equation of the first class, we provide opportunities for a
larger diversity. Studying an algebraic variety, one usually pays attention to a series of natural
characteristics, namely: irreducible components, stratification of the points on the variety with
respect to the dimension of the tangent space and so on. In the study of DA-manifolds these
characteristics are also of interest. Nevertheless, there is a certain specifics.

For example, the dimension of the linear space of the solutions of system (2) can be both
finite and infinite. In the case when it is infinite the question arise:

Question 9: (a) Under which condition the dimension of the intersection is finite? (b)
If the dimension is finite, how to estimate it? (c¢) How to estimate the number of irreducible
components?

DA-manifold defined by the equation d;(z) = 0 is a cone, and DA-manifold defined by a
Horn system is a linear space. However, when we speak about conic sections, we mean that the
cutting plane does not necessary go through the vertex of the cone, as it is in our examples. We
can easily avoid this limitation. Let zo(z,y) be an analytic function of complexity one, which
is a solution of the Horn system, i.e., G;(20) = Gy(20) = 0. Then we can consider the affine
subspace, which consists of the functions of the form {z = zp + 0z}, where ¢z is a solution of the
Horn system, i.e., G;(6z) = Gy(dz) = 0, and construct its intersection with the cone C1', which
is certainly nonempty (there zj lies).

Some of the discussed examples of Horn systems are systems with parameters. This feature
can be easily interpreted with the help of differential algebra. In the definition of the differential
ring R we should include these parameters in the field of constants.

Next, note that all our considerations can be adapted to functions of larger number of
variables. The functions of complexity one in n variables are analytic functions of the form
2(x1,...,xy) = clar(z1) + -+ + an(zy)), where (aq,...,a,,c) are functions of one variable.
The class of such functions, as in the case of two variables, is defined by a set of differential
polynomials.

The consideration of examples with parameters allows us to note that in all discussed situ-
ations for the existence of solutions of complexity one there are necessarily restrictions on the
parameters. Le., solutions exist only for a proper algebraic subset of the space of parameters.

Question 10: Do there exist holonomic Horn systems with parameters, such that there are
solutions of complexity one for all values of parameters?

Let a Horn system with parameters be given. And let solutions of complexity not greater
than a fixed n of this system exist only under some nontrivial analytic conditions (for all natural
n). Then it is easy to show that all solutions for generic values of parameters (outside solutions
of some enumerable system of analytic equations) have infinite complexity. On the other hand,
if we assume that for a Horn system with parameters all solutions are of finite complexity, then
there exists a number N, such that all solutions for all values of parameters have complexity not
greater than V.

The author is grateful to A.K.Tsikh and T.M.Sadykov for the discussion of this paper.
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O rumnepreomerpumiecKnx QYHKIUAX JIBYyX II€PEMEHHBIX
CJIO’KHOCTU OJVH

Banaepuit K.Benomranka

Has cepuu npumepos cucmem lTopua u cucmemsvs Jaypuueanve daa Gynkyuti 06ys nepemeHHus 0aHo
onucanue pewenuli, UMENUUT GHAAUTIUYECKYI0 CAodcHoce 0dun. Cmasumcea pad 6onpocos.

Katouesoie cro6a: GHaAAUMUYECKAA CAONCHOCTD, 2unepzeomempuieckue Gynkyuu, cucmema Lopna, cu-
cmema JIaypuveanv,, dudpepenyuaivroe £0avYo.
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