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Abstract. There are two ways to describe a geometric object L: the object as an image of a
mapping and the object as a preimage. Every method has its own advantages and shortcomings;
together, they give a complete picture. In order to compare these descriptions by complexity, one
can use Kolmogorov's approach: i.e., after the clari�cation of the system of basic operations, the
complexity of a description is the minimum length of the de�ning text. Accordingly, we obtain two
Kolmogorov complexities: in the �rst case, K+(L), and in the other, K−(L). Let Cln be the class
of functions of two variables that can be represented by analytic functions of one variable and of
the addition of the depth not exceeding n, and let K+(Cln) and K−(Cln) be their corresponding
Kolmogorov complexities. There are arguments in favor of the fact that, for n > 2, the value of
K−(Cln) is very large, and the task of constructing a description of Cln in the form of a preimage
(by de�ning relations) even for n = 2 is computationally unrealizable. Based on this observation, a
signal encoding-decoding scheme is proposed, and arguments are given in favor of the fact that the
decoding of a signal encoded using such a scheme is inaccessible to a quantum computer.

DOI

1. Coordinate descriptions: object as an image and as a preimage

When describing geometric objects using coordinates, the descriptions widely used two types. The direct
one (+) considers an object as an image of the parameter space under the action of a mapping and the
inverse one (-) that considers an object as a subset of the encompassing space given by certain de�ning
relations. Here's the simplest example.

Consider a line in the real space R3. In the �rst representation, the line l passing through a point (a, b, c)
in the direction of the vector (α, β, γ) is the image of the mapping ϕ = (x(t), y(t), z(t)) of a real line with
the coordinate t into the space R3 with the coordinates (x, y, z). And in the other representation, this is a
subset of this R3, distinguished by two relations:

(+) x(t) = a + α t, y(t) = b + β t, z(t) = c + γ t,

(−) t =
x− a

α
=

y − b

β
=

z − c

γ
or

u(x, y) = −β a + α b− α y + β x = 0,

v(x, y) = −aγ + α c− α z + γ x = 0. .

That is, in the other case, the straight line is the inverse image of the origin for the mapping ψ from R3 to
the plane of variables (u, v), where ψ = (u(x, y, z), v(x, y, z)).

These two representations, the direct one (+), in the form of an image, and the inverse one (-), in the
form of preimage, complement each other and are dual with respect to each other. The �rst representation
is focused on the explicit generation of points of the object (line). However, if there is a certain point
p = (x0, y0, z0) ∈ R3 and we are interested in the question of whether it belongs to a given line, then we
must pass to the other representation. And this second representation solves two problems. It gives a criterion
for a point p to belong to a given line, and also calculates the value of t = t0 at which ϕ(t0) = p. Towards
the �rst subtask, the task of calculating t0, the other, the membership criterion for the line, is a solvability
condition.

In this simplest example, both the representations are simple and the passage from one representation to
another is also simple. If, for the measure of complexity of the expression χ, we take the number N(χ) of
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arithmetic operations needed to calculate it, then the complexity for the direct representation is N+ = 6,
and for the inverse representation N− = 8.

Consider another example.

Let Cl1 be the set of analytic functions z(x, y) of two variables having a representation of the form
z = c(a(x) + b(y)), where (a, b, c) are analytical functions of one variable. This de�nition of Cl1 is obviously
a de�nition of the �rst type, i.e., the de�nition in the form of an image. If A is a sheaf of germs of holomorphic
functions on the complex plane C (analytic functions of one variable), then the space of parameters is the
direct sum A⊕A⊕A. The mapping into a sheaf of analytic functions of two variables has the form

z(x, y) = ϕ(a, b, c)(x, y) = c(a(x) + b(y)). (1)

This representation has all the advantages and disadvantages of a direct representation (as an image): we have
an explicit expression that enables us, by varying the parameters (a, b, c), generate all functions z(x, y) ∈ Cl1.
However, if we have a speci�c analytic function z(x, y) and we need to �nd out whether z belongs to the
class Cl1, then we need a representation of the other type. To pass from the representation (1) to the inverse
representation, we must exclude the parameters (a, b, c) from the relation z(x, y)− c(a(x) + b(y)) = 0. This
is not di�cult to do (see [1]); as a result, we obtain a relation of the form

ψ(z) = z′x z′y (z′′′xxy z′y − z′′′xyy z′x) + z′′xy ((z′x)2 z′′yy − (z′y)2 z′′xx) = 0. (2)

This relation is a criterion for z to belong to the family Cl1 in the following sense. If z has a local rep-
resentation of the form (1), then ψ(z)(x, y) is identically zero wherever z is de�ned. If ψ(z) is identically
zero, then there are two possibilities. Either z is a function of one variable, and then it obviously has the
desired representation, or in a neighborhood of any point where z′x z′y 6= 0, the germ of the function z has
a representation of the form (1), which analytically continues along all those paths along which z continues
and on which the expression z′x(x, y) z′y(x, y) does not vanish. Note also that ψ(z) is the numerator of the
di�erential fraction R(z) = (log(z′x/z′y))′′xy. Relation (2) is the solution to the second subtask (-), i.e., a
criterion for the existence of the functions (a, b, c). When this criterion is satis�ed, the components of the
representation (a, b, c) are restored using the integration unambiguously, up to the choice of three constants.

In this example, to calculate the complexity of an expression, we shall count the number of entering
functions of one variable, di�erentiations, and arithmetic operations. Then, for the direct representation, we
obtain N+ = 4 and, for the inverse, N− = 7. Here we calculated N− for R; for ψ we shall obtain more.

The class Cl1 of functions of the form c(a(x)+ b(y)) can be included in the expanding hierarchy of classes
de�ned inductively.

Cl0 = {a(x) or b(y), a, b ∈ A},
Cln+1 = {z(x, y) = c(An(x, y) + Bn(x, y)), An, Bn ∈ Cln, c ∈ A}.

All classes Cln in this hierarchy, by de�nition, obtain an explicit direct description (+). For example, the func-
tions of the 2nd class are parameterized by seven functions of one variable (a(t), b(t), c(t), p(t), q(t), r(t), s(t)),
and an arbitrary function of the 2nd class has the form

z = ϕ2(a, b, c, p, q, r, s)(x, y) = s (c(a(x) + b(y)) + r(p(x) + q(y)))

In accordance with our rule for calculating the complexity, we have N+(ϕ0) = 1, N+(ϕ1) = 4, N+(ϕ2) = 10,
and then N+(ϕn+1) = 2 N+(ϕn) + 2. Every class Cln has a �nite set of de�ning di�erential polynomials
ψn(z) = (P 1

n(z), . . . , Pmn
n (z)), which give the inverse (-) description of the class, i.e., Cln = {z : ψn(z) = 0}.

The problem of constructing ψn(z) is the problem of the same type as the problem of constructing ψ1(z)
considered above. We have to sequentially eliminate unknown functions of one variable and obtain the
solvability conditions. After eliminating the last function, we obtain the solvability conditions for the function
z only. These are the equations of the class. For the purposes of elimination, one can use various techniques
(resultants, methods of construction of bases of di�erential ideals).

The classes Cln considered above are classes of functions that admit a representation by functions of one
variable and by the addition of depth no higher than n. One can consider classes Cl(S) constructed from
functions of one variable and addition according to an arbitrary composition scheme S. By a composition
scheme we mean a way of arranging brackets to construct the composition. And the same argument allows
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us to assert that Cl(S) has its own �nite set of de�ning di�erential polynomials P (Cl(S)). In order to
characterize the complexity of a �nite set of di�erential polynomials P , we introduce into consideration the
following quantities: k(P ) is the maximum di�erential order, d(P ) is the maximum algebraic degree, m(P )
is the number of polynomials, and M(P ) is the total number of monomials. In the paper [2], it was shown
how dramatically the complexity of de�ning polynomials increases under a slight complication of the circuit
as compared to the �rst class circuit. Let us present here some results of this paper.

If P = P (Cl0), then k = 1, d = 2, m = M = 1.

If P = P (Cl1), then k = 3, d = 4, m = 1, M = 4.

If P = P (Cl1+), where Cl1+ = {z = c(a(x) + b(y)) + p(x)}, then
k = 5, d = 6, m = 2, M = 68.

If P = P (Cl1++), where Cl1++ = {z = c(a(x) + b(y)) + p(x + y)}, then
k = 7, d = 435, m = 6.

There are no exact calculations for Cl2. However, some estimates can be o�ered. The di�erential relations
for Cl2 begin at the 11-jet and end at the 32nd one. In this case, the de�ning polynomials are relations only
for derivatives of z. If we restrict ourselves to the order 11, then there are 77 variables in such a jet. The
estimate of the algebraic degree of the corresponding algebraic subvariety of the 11-jet, by Bezout's theorem,
gives ≈ 1090. The estimate for the number of monomials is ≈ 102000.

Thus, we can summarize:

The problem of constructing ψn(z), i.e. constructing an inverse description of Cln, is very complicated
for all n > 2

Moreover, not only the method of obtaining an answer is very complex, but also the answer itself, i.e.,
the de�ning di�erential polynomials (P 1

n(z), . . . , Pmn
n (z)). And we �nd ourselves in a situation where, from

the computational point of view, the direct problem (+) is quite simple, and the inverse (-) is absolutely
inaccessible.

A good example of such a situation in number theory is the pair of reciprocal integer problems: computing
the exponential functions and logarithms in the multiplicative group of a �nite �eld. As is known, common
algorithms of encryption of information [3] are based on the high di�culty of integer logarithm problems.

2. Asymmetry of the Kolmogorov complexity in problems of describing the classes Cln

In his 1965 paper [4], A. N. Kolmogorov discussed two well-known approaches to the de�nition of the
�amount of information�: the combinatorial and probabilistic ones, and also proposed a new approach, the
algorithmic one. In the context of discrete mathematics, this algorithmic approach is commonly understood
as a way to measure the �complexity� of a �nite sequence of elements of some discrete set. Moreover, it is
proposed to take, for a measure of the complexity of a sequence, the length of an �optimal� program (in some
programming language) that writes out this sequence.

From the point of view of the two ways discussed above of describing an object, the algorithm generating
the sequence Z is a direct description (+) of the object Z, i.e., as the image of some mapping of a segment
of the positive integers f (a partially recursive function), i.e., Z = {f(1), f(2), . . . , f(m)}. To it, certainly,
one can assign the inverse problem (-), which is the identi�cation problem, i.e., the problem of verifying the
validity of the condition z ∈ Z. Both the �rst and second problems have the Kolmogorov complexity: K+(Z)
and K−(Z).

We can talk about computability and algorithms outside discrete mathematics (see, for example, [5]). Let
us pass to an analytical context, in which we can discuss the complexity of direct and inverse problems of
describing the classes Cln. For this, as above when discussing the complexity of Cl1, we include into the list
of elementary operations the functions of one variable, the di�erentiation, and the arithmetic operations. As
a result, we obtain two Kolmogorov complexities of the class, K+(Cln) and K−(Cln).
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The thesis formulated in the previous section can now be reformulated as follows:

For n > 2 the complexity of an identi�cation algorithm of class K−(Cln) is signi�cantly higher than the
complexity of a generating algorithm of class K+(Cln).

3. Algorithm of coding a signal.

Based on the observation formulated above, we can propose a way of signal encoding-decoding. The
modern cryptography is almost entirely immersed in a discrete paradigm. Therefore, we stress that we are
talking about a way that does not require the discretization in itself.

Let the transmitted physical signal be a function F (t) de�ned on a closed interval α1 6 t 6 α2. There
are many ways to replace the function F (t) on a closed interval by its approximation on this interval by a
real function f(t) which is holomorphic or meromorphic on the entire complex plane. It can be a polynomial
(Weierstrass theorem), a trigonometric polynomial (Fourier series expansion), an entire function of bounded
growth (Kotelnikov theorem, [6]), etc. Thus, f(t) is an analytic function on the whole line a direct that well
approximates F on [α1, α2]. Moreover, taking into account the physical nature of the signal, we can assume
that all such functions are uniformly bounded on [α1, α2], i.e., |f(t)| 6 Mf .

Consider an expression in Cl2 of the form

z(x, t) = s (c(a(x) + b(t)) + r(p(x) + f(t))) .

Here f(t) is the approximation of F (t) that we constructed. The remaining six functions K = (a, b, p, c, r, s)
is the key for the encoding-decoding procedures. Regarding the functions r and s, we assume that their
derivatives are strictly positive on the whole real line, i.e., the inverse functions r−1 and s−1 are analytic
functions that are single-valued on the whole line. The remaining four functions (a, b, c, p) are arbitrary
real-analytic functions on the line. Here, both as functions (a, b, c, p) and as the functions (r, s), one should
choose functions of a fairly general form. For example, if all these functions are polynomials (this is quite
admissible), then the degrees should not be chosen too small, and, in the �nite-dimensional spaces of the
families of coe�cients of such polynomials, one should choose a point of a su�ciently general position.

Below, we assume that the key K is �xed and is not subjected to disclosure. The coding is carried out by
applying the operator Φ to f(t), and the decoding is in applying the operator Ψ to z(x, t):

f(t) → Φ(K, f) = s(c(a(x) + b(t)) + r(p(x) + f(t))) = z(x, t),
z(x, t) → Ψ(K, f) = r−1(s−1(z(x, t))− w)− p(x) = f(t),

where w = c(a(x) + b(t)).

The procedure is as follows.

The sender:
(1) transforms the signal F (t) into an analytical expression f(t) approximating F on [α1, α2],
(2) using the key K and the operator Φ, transforms f(t) into z(x, t) (the image),
(3) transmits z(x, t) to the recipient via an open communication channel.
The recipient:
(4) using the key K and the operator Ψ, transforms z(x, t) into f(t), i.e., to the approximation of the original
signal F (t) on the closed interval α1 6 t 6 α2.

This procedure is resistant to errors in the transmission of the image z(x, y). Let

|f(t)| 6 Mf for α1 6 t 6 α2, |p(x)| 6 Mp for β1 6 x 6 β2,

|w(x, t)| 6 Mw for α1 6 t 6 α2, β1 6 x 6 β2,

|r(u)| 6 Mr for |u| 6 Mp + Mf , |s(v)| 6 Ms for |v| 6 Mw + Mr.

Then |z| 6 Ms for α1 6 t 6 α2, β1 6 x 6 β2. Let Ns be the minimum of |s′(v)| for |v| 6 Mw + Mr, and let
Nr be the minimum of |r′(u)| for |u| 6 Mp + Mf .

Let, as a result of errors in the formation and transmission of the message, z transformed into z̃ = z + δz.
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Accordingly, Ψ(K, z + δz) = f + δf = f̃ . Then

|δf | = |r−1(s−1(z(x, t) + δz(x, t))− w)− r−1(s−1(z(x, t))− w)|
6 1

Nr
|s−1(z(x, t) + δz(x, t))− s−1(z(x, t))| 6 1

Nr Ns
|δz(x, t)|.

Note that f does not depend on x, which is not the case for f̃ .

The given encoding-decoding scheme uses the key K, which is applied by both participants; the sender
for encoding, the recipient for decoding In the absence of a key, the decoding problem (the decomposition
problem for a 2nd class function) becomes very di�cult.

This is a very �exible construction, and we have many options for its complication and modi�cation. From
the scheme of composition of functions in the class Cl2, we can pass to a scheme based on the representation
of a function from Cln (the key is a family of 2 (2n − 1) functions of one variable). Or to Cl(S) for an
arbitrary composition scheme S.

In a more general situation, the construction looks as follows. We choose one of functions that are at the
lowest level of composition (a function of t), and reserve it for the transmitted signal F (t) (more precisely, for
its analytical approximation f(t)). We �x all other analytical functions of one variable needed to construct
a composition with a circuit S, choosing functions of a fairly general position, i.e., the key K. We obtain
the coding operator f(t) → Φ(S,K, f)(x, t) = z(x, t). The decoding operator z(x, t) → Ψ(S, K, z)(t) = f(t)
is constructed similarly to what we described above for Cl2. The decoding is carried out by step by step
reducing of the complexity of the composition. In this case, the decoding operators for expressions of lesser
complexity naturally arise, that use parts of our key, When constructing the operator Ψ, inversions of some
functions included in the key are used. Therefore, when generating the key, we impose the condition that
these functions are monotone.

Another direction of generalization of the construction is associated with the use of hierarchies of com-
plexity for functions of larger number of variables rather than two [7]. For functions of three variables, two
problems can be considered: the question on the representability by superpositions of functions of one vari-
able and the addition (superpositions (3) → (1)) or on representability by superpositions of functions of two
variables (superpositions (3) → (2)). Let us stand up at the second point of view, and now let A be a sheaf
of germs of analytical functions of two variables. Consider the hierarchy of classes of analytical functions of
three variables w = g(x, y, z) determined inductively:

Cl0 = {a(x, y) or b(y, z) or c(z, x), a, b, c ∈ A},
Cln+1 = {w(x, y, z) = c(An(x, y, z), Bn(x, y, z)), An, Bn ∈ Cln, c ∈ A}.

The identi�cation problem for Cl2 is very di�cult. This can be used for an encoding circuit for a 2-dimensional
signal (image) f(t, s).

The general scheme for the composition of a function w ∈ Cl2 uses seven functions of two variables. Each
of the four lower-level functions depends on some two variables from the set (x, t, s); it is necessary to clarify
which ones are used. Let us �x this choice, for example, like this:

w(x, t, s) = ϕ(a, b, c, p, f, r, s)(x, t) = s(c(a(x, t), b(x, s)), r(p(x, s), f(t, s))),

We reserve one of the lower-level functions for our signal, and �x the remaining six ones and declare them
as the key K. Thus we obtain the transformation

f(t, s) → Φ(K, f)(x, t, s) = s(c(a(x, t), b(x, s)), r(p(x, s), f(t, s))) = w(x, t, s).

To make the transformation invertible (the analog of monotonicity), we must have two keys (K,K ′). More-
over, each of the three pairs of functions (s, s′) and (r, r′) must de�ne a globally invertible transformation
of R2. The coding is

f(t, s) → (Φ(K, f)(x, t, s), Φ(K ′, f)(x, t, s)) = (w1(x, t, s), w2(x, t, s)),

i.e., (w1(x, t, s), w2(x, t, s)) are sent to the recipient. The decoding is carried out using the mappings of R2

inverse to (s(u, v), s′(u, v)) and (r(u, v), r′(u, v)). Note that this construction allows one to transmit two
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encoded images in one session: f using K and h using K ′. But the equality h = f does not interfere with
the procedure. It should also be noted that a function of one variable f(t) can also be transferred as f .

A further complication of the construction can be obtained by considering hierarchies related to the
superposition problem of the form (k) → (l), where k > l (expansion of functions of k variables in a
superposition of functions of l variables).

Let us present arguments in favor of the fact that the encryption scheme using functions in Cl2 of two
variables is not available for decoding using a quantum computer, i.e., a computing system constructed from
qubits [8]. The state of one qubit is described by a complex-valued function of time t taking values on the unit
circle of the complex planes, i.e., exp(i ν(t)). This is a function of one variable. The quantum superposition
is a transition to a linear combination. Let there be a computational device that allows, as simple basic
operations, a set of four arithmetic operations, performs all (analytical) functions of one variable, as well
as analytical operations on them (superposition, di�erentiation, and integration). Such a device appears
to dominate the quantum computer. The demonstration given in [2] aims to show that the problem of
constructing a decomposition for functions in Cl2 (in the absence of a key) is apparently inaccessible even
for such a powerful device.

Certainly, if we imagine that advances in the physical sciences will lead to a situation in which instead
of a qubit, another unit will be proposed, the state of which is a function of not one but two variables,
and a device for free manipulation with a system of such units will be suggested, then our argument for
such a computer will be not applicable. Then we will need a coding scheme (considered above) based on the
complexity of the Cl2 identi�cation problem for functions of three variables.
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