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Abstract. In the paper, a systematic construction of the theory of “weighted” model surfaces using
the Bloom-Graham-Stepanova concept of the type of a CR-manifold is given. The construction is
based on the Poincaré construction. It is shown how the use of weighted model surfaces expands the
abilities of the method. New questions are being posed.
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1. INTRODUCTION

Among the approaches to the local analysis of CR-submanifolds of a complex space, the method of the
model surface should be noted. This is an efficient analytical approach with more than a century of history.
The basis of this method is a certain version of the implicit mapping theorem in the class of formal power
series. The author of this technique is H. Poincaré, who used it both in the problems of celestial mechanics
and in the area that is now called CR-geometry [1].

Recently, the scope of this approach has been extended to the class of arbitrary germs of finite Bloom–
Graham type [2]. However, here the standard version of this method was used. This means that the variables
in the complex tangent of the germ have the same weight. In a number of special cases, a more flexible
technique of free assigning weights to complex tangent variables ([3, 4, 5]). Let us explain what was said
above by an example in the paper [6].

Consider a hypersurface in the space Cn+2 with coordinates (z1, . . . , zn, ζ, w = u + i v) given by the
equation

v = 2 Re(z1ζ̄ + · · ·+ znζ̄
n). (1)

This hypersurface has the Bloom–Graham type m = (2), the model surface Q = {v = 2 Re(z1ζ̄)} is
holomorphically degenerate, and the dimension of the algebra of its automorphisms is infinite, while the
algebra of automorphisms of the hypersurface itself is finite-dimensional. This is what we obtain when using
the standard approach, when the weights of all coordinates in the complex tangent (both z and ζ) are the
same and equal to 1. However, if we arrange the weights differently, namely: ([ζ] = 1, [zj ] = 1+n− j, [w] =
n + 1), then the surface becomes weighted homogeneous (of weight n + 1). Moreover, this hypersurface is
holomorphically homogeneous. Using the “weighted” version of Poincaré’s construction, one can obtain an
estimate for the dimension of the automorphism algebra for the germ of the perturbed hypersurface

v = 2Re (z1ζ̄ + · · ·+ znζ̄
n) + o(n+ 1).

It is clear that the correct viewpoint concerning this example is to consider this hypersurface as a weighted
homogeneous one and that a “weighted” theory of model surfaces of finite type stands behind this example.
Here the first step in the construction of such a theory, namely, the proof of the “weighted” analog of the
Bloom–Graham theorem, has already been done by M. Stepanova in [10].

The objective of this paper is to systematically construct such a “weighted” theory of model surfaces,
which is based on the weighted Bloom–Graham–Stepanova type of the germ in the same way in which the
theory constructed in the paper [2] is based on the Bloom–Graham type [8].

2. Weights and the weighted type of the germ of a CR-manifold.

Poincaré’s construction, which underlies the method, is mainly analytical. Therefore, for the two equivalent
definitions of the type of a germ, the analytical definition using the form of local equations of the germ of a
manifold is the main one for us.

The difference between the weighted version and the standard version lies in the possibility of choosing
different weights for the coordinates of the complex tangent.
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26 BELOSHAPKA

Let the coordinates of the ambient spaceCN be divided into two groups, z ∈ Cn and w ∈ CK . Accordingly,
each of the two coordinate subspaces is decomposed into a direct sum

Cn = Cn1 + · · ·+Cnp , CK = Ck1 + · · ·+Ckq .

Let two sets of positive integers be given,

µ1 < µ2 < · · · < µp, m1 < m2 < · · · < mq.

Assign weights to the coordinates as follows:

[zα] = µα, where zα ∈ Cnα , [wβ ] = mβ , where wβ ∈ Ckβ .

It is implied that
z̄α, w̄β , Re zα, Im zα, Rewβ = uβ , Imwβ = vβ

have the corresponding weights. Moreover, the differentiation with respect to the coordinate of weight ν
obtains the weight −ν.

Let the local equations of the germ of a CR-manifold M0 at the origin have the form

vβ = Φβ(z, z̄, u) + o(mβ), β = 1, . . . , q, (2)

where Φβ is a quasihomogeneous polynomial vector of weight mβ , and the symbol o(ν) is treated as a vector
function whose Taylor expansion at the origin contains terms whose weights are strictly greater than ν.

It is shown in [7] that, by simple invertible polynomial changes of coordinates in a neighborhood of the
origin, one can always subject local equations of the form (2) to an additional reduction and reduce to the
same form in which the weighted homogeneous forms Φj satisfy additional conditions. These conditions are
related to the existence of invertible holomorphic transformations that preserve the form (2) but change
the lower coordinate forms of the equation. Every holomorphic polynomial in the space CN is a linear

combination of monomials of the form (we use the multi-notation) zγ1

1 . . . z
γp
p wδ1

1 . . . w
δq
q . Every monomial of

this kind is the ability to change some lower coordinate forms in the germ equation. The coordinate forms
Φ themselves are real polynomials each of which is a linear combination of real monomials of the form

zγ1

1 . . . zγp
p z̄γ̄1

1 . . . z̄γ̄p
p uδ11 . . . uδqq .

Using holomorphically polynomial transformations mentioned above, one can achieve the validity of the
following two conditions:

(I) the coordinates of all forms do not contain monomials of the form

zγ1

1 . . . zγp
p uδ11 . . . uδqq and of the form z̄γ1

1 . . . z̄γp
p uδ11 . . . uδqq for any γ and δ,

(II) for every J , 1 ⩽ J ⩽ p, none of the coordinates of the form ΦJ

contains terms of the form c ϕ(z, z̄, u)uδ11 . . . uδpp such that

ϕ(z, z̄, u) is a scalar coordinate of some form Φj for j < J, and

c is a nonzero constant.

Note that the first condition is the condition that pluriharmonic summands are absent. The other condi-
tion, unlike the first one, is of recurrent nature. In this case, the formulation “does not contain summands”
should be treated as follows: it is impossible to compose an expression of the specified type from the mono-
mials entering the coordinate form.

For every chosen weight ν, denote by Nν the real linear space of polynomials of the weight ν that satisfy
conditions (I) and (II).

Definition (analytical): Choose some weight µ = ((µ1, n1), . . . , (µp, np)) on the variables of the group
z. Let one can introduce coordinates in a neighborhood of a point ξ ∈ M ⊂ CN in such a way that the
local equation of M has the form (2), where the coordinate forms Φ satisfy conditions (I) and (II) and
are also linearly independent. Then we say that the generating manifold M has a finite µ-type equal to
m = ((m1, k1), . . . , (mq, kq)).

Note that, since the minimal weight of the variables of the group z is µ1, and the forms Φ do not contain
pluriharmonic summands, it follows that the minimal admissible weight is 2µ1. Thus,

2µ1 ⩽ m1 < · · · < mq.
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If we choose µ = ((1, n)) as the weight, then we obtain a modified Bloom–Graham’s analytical definition.
Before proceeding to a geometric definition, we recall the ordinary geometric definition of the finiteness

of the type according to Bloom–Graham. This definition is not tied to the choice of any weights and remains
without changes for us.

Let D1 be the distribution of complex tangents defined on M in a neighborhood of ξ, i.e., D1 = T c
M . This

distribution can be specified using a basis family of 2n smooth real vector fields. Further, define an infinite
sequence of distributions Dν given inductively:

Dν+1 = [Dν , D1] +Dν , ν = 1, 2, . . . .

Further, let Dν(ξ) be the value of Dν at the point ξ. Thus,

T c Mξ = D1(ξ) ⊂ D2(ξ) ⊂ · · · ⊂ Dν(ξ) ⊂ . . .

Since this nondecreasing sequence consists of subspaces of TMξ, it follows that it stabilizes at some step. If
the last subspace coincides with TMξ, then we say that M , at the point ξ, is a manifold of finite type (if
not, of infinite type).

We assume below that M , at the point ξ, is a manifold of finite type. Let us return to our “weighted”
situation. It is clear that, for a manifold given by equations (2), the subspace D1(0) coincides with the space
generated by the derivations on the spaceCn of he coordinate z and obtains the decomposition corresponding
to the weight µ. In accordance with our convention, the differentiations with respect to coordinates obtain
weights equal to minus the weights of the coordinates. Due to the finiteness of the type at the point, the
inductive process described above gives all the tangent space at the point in a certain number of steps.
Thus, every vector of the tangent space obtains an expression in terms of differentiations with respect to
coordinates spaces Cn. As a result, we obtain

T c
0M = D1(0) ⊂ D2(0) ⊂ · · · ⊂ Dmax(0) = T0M,

where the subspace Dν(0) is formed by the differentiations of weight −ν. Let 2 ⩽ m1 < m2 < · · · < ml be
the values of the weights for which the dimension grows, i.e., dim Dmj

(0) > dim Dmj−1(0), and denote by
kj the value of this growth, i.e., dim Dmj

(0)− dim Dmj−1(0) > 0.
The familym = ((m1, k1), . . . , (mq, kq)) gives the second, geometric, definition of the µ-type. According

to [7], these definitions are equivalent. Note that, if the type of the manifold at a point were infinite, then,
as in the standard case, we could speak about the µ-type at the point, completing our family with the pair
(∞, d), where d = K − (k1 + · · ·+ kl) stands for the defect at the point (see also [10]). In our case of finite
type, the defect is equal to zero.

Statement 1 (see [7]).
(a) The geometric and analytic definitions of the µ-type of a germ are equivalent.
(b) The µ-type of a germ is invariant under locally holomorphic transformations that preserve the weight
expansion of the complex tangent at the center of the germ.
(c) If the germ is of finite type m = ((m1, k1), . . . , (mq, kq)), then, for all α = 1, . . . , p,

kα ⩽ dim Nα.

Note that there is a significant difference between the distribution of weights in the variable z (the value µ)
and the distribution of weights in the variable w (the value m). If we assign µ as we like, then, for chosenMξ

and µ, the value m, i.e., µ-type of the germ, is recovered uniquely. Therefore, we can write m = m(Mξ, µ).

3. Lower components of the mapping

Let there be a locally invertible holomorphic mapping χ = (f, g) of the form

(zα → fα(z, w), wβ → gβ(z, w)), α = 1, . . . , p, β = 1, . . . , q,

of the germ at the origin M0 of finite type m given by equations in the reduced form,

vβ = Φβ(z, z̄, u) + Fβ(z, z̄, u), j = 1, . . . , q, (3)
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into another similar germ M̃0,

vβ = Φ̃β(z, z̄, u) + F̃β(z, z̄, u), j = 1, . . . , q, (4)

where Fβ and F̃β are o(mβ) preserving the origin and the weight expansion of the complex tangent at zero.
Consider the surfaces given by the equations

Q = {vβ = Φj(z, z̄, u)}, Q̃ = {vβ = Φ̃β(z, z̄, u)}, β = 1, . . . , q. (5)

We shall say that Q and Q̃ are µ-model surfaces of the germs M0 and M̃0.
In what follows, we use the expansions

fα =
∑

fαγ , gβ =
∑

gβγ , Fβ =
∑

Fβγ , F̃β =
∑

F̃βγ ,

where fαγ , gβγ , Fβγ , F̃βγ are the components of the weight γ.
In this notation, the fact that the mapping preserves the origin and the decomposition of the complex

tangent into the weight components means that

fα = Cα zα + τα(z, w) + o(µα),

where Cα is a nondegenerate transformation of the linear space Cnα , and τα(z, w) is a vector polynomial of
the weight µα, which can depend on zγ only for γ < α and from wδ such that mδ < µα. Thus, τα(z, w) does
not contain linear terms. Write

C z = (C1 z1, . . . , Cp zp), τ(z, w) = (τ1(z, w), . . . , τp(z, w))

ρw = (ρ1 w1, . . . , ρq wq), θ(z, w) = (θ1(z, w), . . . , θq(z, w)).

Writing out that the image of M0 is contained in M̃0, we obtain the identity

Im g = Φ̃(f, f̄ ,Re g) + F̃ (f, f̄ ,Re g) for w = u+ i(Φ + F ). (6)

Consider the lower components of identity (6).
Let us begin with the group of variables w1. In the weights from 1 to (m1 − 1), we obtain Im g1ν = 0,

where 1 ⩽ ν ⩽ m1 − 1. Taking into account that a uniform form of a weight ν < m1 is a holomorphic form
of the variables of the group z, we conclude that g11 = g12 = · · · = g1(m1−1) = 0.

In the weight m1, we have g1m1 = a(z) + ρ1 w1, fα = Cα (zα + τα(z, w)), where ρ1 and Cα are linear
and invertible and a(z) is a holomorphic homogeneous form of the weight m1. We obtain

Im (a(z) + ρ1 (u1 + iΦ1)) = Φ̃1(C (z + τ(z, w)), C (z + τ(z, w))).

Since m1 is the lowest weight in the weight group w, it follows that, the variables of the group w cannot
enter the coordinates τ on which Φ1 depends. That is, τ may depend on w, but not for the coordinates on
which Φ1 depends.

Separating in this relation the component that is holomorphic in z and taking into account that Φ1 and
Φ̃1 do not contain holomorphic summands, we see that a(z) = 0. From the linear component in u1 we obtain
Im ρ1 u1 = 0. Then we have the following relation:

ρ1Φ1(z, z̄) = Φ̃1(C (z + τ(z)), C (z + τ(z)))/ (7)

Note that this relation is equivalent to the fact that the mapping (z → C (z+τ(z)), w1 → ρ1 w1) translates
the “truncated” model surface Q(1) = {v1 = Φ1(z, z̄)} of the space Cn+k1 of type (m1, k1) into another
“truncated” surface Q̃(1) = {v1 = Φ̃1(z, z̄)} of the same type.

Let us pass to the coordinate w2. The components g2ν , where ν < m2, are expressions of the form∑
ψαβ (z, w1), where ψαβ (z, w1) is a holomorphic multilinear form of the weight α in z and β in w1, and

α+m1 β = ν. The components of identity (6) of weights ν < m2 give

Im (
∑

ψαβ (z, u1 + iΦ1)) = 0,

Whence it follows that g2ν = 0 for ν < m2. This could be proven directly from the identity obtained above.
However, we use another way. Indeed, g2ν is a holomorphic function on the “truncated” generating manifold
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of finite type Q1 = {(z, w1) : v1 = Φ1(z, z̄)} whose imaginary part is equal to zero. Therefore, g2ν is constant,
and, since its weight is greater than zero, it follows that g2ν is zero.

In the weight m2 we have g2m2
=

∑
ψγδ (z, w1) + ρ2 w2, where ψγδ has the weight γ with respect to z

and the degree δ with respect to w1, ρ2 is linear, and γ +m1 δ = m2; moreover, the following relation holds:

Im
(∑

ψγδ (z, u1 + iΦ1) + ρ2(u2 + iΦ2(z, z̄, u1))
)

= Φ̃2(C (z + τ(z, w1)), C (z + τ(z, w1)), ρ1 u1).

Separating the terms that are linear in u2, we obtain Im(ρ2)u2 = 0, i.e., the linear mapping ρ2 is real.
Thus, the relation acquires the form

Im
(∑

ψγδ (z, u1 + iΦ1(z, z̄))
)
= −ρ2 Φ2(z, z̄, u1)

+Φ̃2(C (z + τ(z, u1 + iΦ1)), C (z + τ(z, u1 + iΦ1(z, z̄))), ρ1 u1).

By condition (I), the right-hand side of this relation does not contain terms that are holomorphic in z.
Setting z̄ = 0, we see that. if γ ̸= 0, then ψγδ (z, u1) = 0, and ψ0δ (u1) is the real form of the weight m2,
which we redenote by ρ2 θ2(w1), i.e., g2m2

= ρ2(w2 + θ2(w1)). Now the relation becomes

ρ2 Φ2(z, z̄, u1) =

Φ̃2(C (z + τ(z, u1 + iΦ1)), C (z + τ(z, u1 + iΦ1)), ρ1 u1) + Im θ2(u1 + iΦ1)

Note that this relation is equivalent to the fact that the mapping

(z → C (z + τ(z, w)), w1 → ρ1 w1, w2 → ρ2 (w2 + θ2(w1)))

takes the second “truncated” generating surface Q(2) = {v1 = Φ1(z, z̄), v2 = Φ2(z, z̄, u1)} Cn+k1+k2 of the
type ((m1, k1), (m2, k2)) into another “truncated” surface Q̃(2) = {v1 = Φ̃1(z, z̄), v2 = Φ̃2(z, z̄, u1)} of the
same type.

And so on, till the last weight group corresponding to wq. Let us formulate the result.

Statement 2. Let

χ = (zα → fα(z, w), wβ → gβ(z, w), α = 1, . . . , p, β = 1, . . . , q)

be an invertible holomorphic mapping of the germ (3) onto another such germ (4) such that its action on
the complex tangent at zero preserves its decomposition into the components of the weights µ. Then
(a) this mapping has the form

(zα → Cα (zα + τα(z, w)) + o(µα), wβ → ρβ (wβ + θβ(w1, . . . , wβ−1)) + o(mβ)),

where Cα ∈ GL(nα,C), ρβ ∈ GL(kβ ,R) and where [τα] = µα, [θβ ] = mβ ,

and, for all β = 1, . . . , q, (8)

Φ̃β(C (z + τ(z, u+ iΦ)), C (z + τ(z, u+ iΦ)), ρ (u+Re (θ(u+ iΦ))))

= ρβ (Φβ(z, z̄, u) + Im θβ(u+ iΦ));

(b) here the “quasilinear” mapping

(z → C (z + τ(z, w)), wν → ρν (wν + θν(w1, . . . , wν−1)), ν = 1, . . . , β) (9)

takes the µ-model surface Q to the µ-model surface Q̃ (see (19)).

Moreover, for every β = 1, . . . , q, the truncated mapping

(z → C z + τ(z, w), wν → ρν wν + θν(w1, . . . , wν−1), ν = 1, . . . , β)

takes the truncated model surface

Q(β) = {vν = Φν , ν = 1, . . . , β}
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of the space Cn+k1+···+kβ into the corresponding truncated model surface.

Q̃(β) = {vν = Φ̃ν , ν = 1, . . . , β}.

Part (b) of the theorem is a special case of this statement.
If we set Q̃ = Q, then the mappings (9) with the condition (8) form some subgroup G0 of the automor-

phisms Q preserving the origin and the weighted expansion of the complex tangent at zero. These are the
automorphisms Q of the form

zα → Cα (zα + τα(z, w)),

wβ → ρβ (wβ + θβ(w1, . . . , wβ−1)). (10)

That is, these are the automorphisms such that every coordinate retains its weight. If we use the notion of a
component introduced by us in Sec. 4, then G0 can be characterized as follows: these are the automorphisms
of Q whose decomposition into components contains only the 0-component. This is just the fact fixed by
(10). The fact that such a mapping is an automorphism of Q is given by conditions (8) (Statement 2) for
Φ̃ = Φ.

The family of transformations of the form (10) without conditions (8) forms a subgroup of polynomial
automorphisms of the space

CN = Cn1 + · · ·+Cnp +Ck1 + · · ·+Ckq .

This subgroup G0 is a semidirect product of the subgroup of triangular transformations of the form

zα → zα + τα(z, w), wβ → wβ + θβ(w1, . . . , wβ−1),

and linear transformations of the form

zα → Cα zα, wβ → ρβ wβ .

In the standard (unweighted) version [2], there is an assertion (Theorem 5, part (f)) claiming that an
element of G0 is uniquely determined by its action on the coordinate z. Here is an analog of this assertion.

Statement 3. If the model surface Q has a finite µ-type and there is an automorphism (f(z, w), g(z, w)) ∈
G0 such that f(z, w) = z, then g(z, w) = w, i.e., this is the identity mapping.

Proof. Set τ(z, w) = 0 and C z = z and write out relation (8) for β = 1; we obtain ρ1Φ1(z, z̄) = Φ1(z, z).
Whence, by the linear independence of the coordinates of Φ1, it follows that ρ1 w1 = w1. Let us write out
relation (8) for β = 2; we obtain

Φ2(z, z, u1) = ρ2 Φ2(z, z̄, u1) + Im θ2(u1 + iΦ1)

Since Φ2 is written out in the reduced form, it follows that θ2 = 0 and ρ2 w2 = w2. And so on, up to β = q.
The statement has been proven.

This statement can be interpreted as the presence of some parametrization of the group G0. Every element
χ ∈ G0 is uniquely determined by the family of parameters (C, τ, ρ, θ), where the family of parameters
is connected by the algebraic relations (8). Statement 3 means that the parameters (ρ, θ) are uniquely
determined by the parameters (C, τ), i.e., ρ = ρ(C, τ), θ = θ(C, τ). The algebraic subset in the space
(C, τ, ρ, θ) defined by the relations (8) has a one-to-one projection to some algebraic subset C of the space
(C, τ). As a result, C obtains the structure of an algebraic group acting on CN and isomorphic to G0.

4. Weighted Poincaré construction

In the linear space V of families of holomorphic germs of the form χ = (f1, . . . , fp; g1, . . . , gq), in a
neighborhood of zero, we introduce the direct decomposition into the components V =

∑
Vν , where Vν

consists of families of the following weights: ((µ1 + ν, . . . , µp + ν), (m1 + ν, . . . ,mq + ν)). Accordingly, we can
write χ =

∑
χ(ν) = (f, g) =

∑
(f (ν), g(ν)) , where

f (ν) = (f1(µ1+ν), . . . , fp(µp+ν)), g(ν) = (g1(m1+ν), . . . , gq(mq+ν)).
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Let the lower (model) terms of the equations (3) and (4) coincide, i.e., Φ̃ = Φ and Q̃ = Q. As shown
above, the lowest component of the mapping χ =

∑
χ(ν) of the surface (3) onto (4) provided that the origin

and the weight expansion of the complex tangent are preserved is χ0, i.e., the family of coordinate functions
has weights of the form ((µ1, . . . , µp), (m1, . . . ,mq)). Here χ0 is an element of the linear algebraic group G0

and, as has been shown, is given by its own system of parameters λ0 = (C, τ, ρ, θ), i.e., χ0 = χ0(λ0). It is
clear that any such mapping χ = χ0+χ1+ . . . can be represented as a composition φ◦ψ, where ψ = φ−1 ◦χ
is a mapping whose 0-component is the identity mapping, i.e., ψ = Id+ ψ(1) + ψ(2) + . . . .

Let us apply the Poincaré construction to estimate the dimension of the family of mappings of the form
ψ = Id + ψ(1) + ψ(2) + . . . . Denote the space V1 + V2 + . . . by V+. Let us now consider identity (6) and
select the ν-th component in this identity. We obtain the relation

−Im g(ν) + dΦ(z, z̄, u) (f (ν), f̄ (ν),Re g(ν)) =

terms depending on the components f (ι), g(ι) for ι < ν, (11)

where w = u+ iΦ(z, z̄, u).

Let K be the kernel of the linear operator

L(f, g) = −Im g + dΦ(z, z̄, u) (f, f̄ ,Re g), where w = u+ iΦ(z, z̄, u), (12)

acting on V+. This is a linear subspace of V+ which can be expanded into components, K(1) + K(2) + . . . .
Regardless of the finite-dimensionality of the kernel K, each of its components separately is finite-dimensional,
since its coordinate projections are subspaces of polynomials of a chosen weight.

The main observation on which the applications of the Poincaré construction in CR-geometry is based is
as follows. The condition that the vector field in a neighborhood of the origin

X = 2Re

(
f
∂

∂z
+ g

∂

∂w

)
belongs to the Lie algebra autQ of infinitesimal holomorphic automorphisms of the model surface Q is
L(f, g) = 0.

Consider relation (11) as a recursive relation for calculating successive components of the mapping ψ.
The first step is to extract the 1-component of (11). It has the form L(f (1), g(1)) = T1(λ0). We see

that, for a unique definition of (f (1), g(1)), it suffices to choose an element λ1 ∈ K(1), and we can write
(f (1), g(1)) = (f (1)(λ1), g

(1)(λ1)). However, for the solvability of the resulting inhomogeneous linear system,
the solvability condition should be added (the condition that T1(λ0) falls into the image L(f (1), g(1)). This
condition C1(λ0, λ1) = 0 is a real algebraic relation between λ0 ∈ G0 and λ1 ∈ K(1).

The second step is to extract the 2-component (11). It has the form L(f (2), g(2)) = T2(λ1), where T2 is a
real polynomial vector in λ1. We see that, for a chosen λ1, for the unique definition of (f (2), g(2)), it suffices
to choose an element λ2 ∈ K(2). And also there is a new solvability condition C2(λ0, λ1, λ2) = 0. And so on
ad infinitum.

If F (z, z̄, u) = F̃ (z, z̄, u) = 0, i.e., the mapping is an automorphism of the model surface, then all matching
conditions vanish, i.e., Cν = 0 for all ν. Thus, the system of parameters that defines an automorphism of Q
of the form χ = χ0 + χ1 + . . . coincides with G0 ∪ K.

In the general case, we obtain the following description of the system of parameters:

Λ(M0) = {(λ0, λ1, λ2, . . . ) ∈ G0 ∪ K : Cν(λ0, λ1, . . . .λν) = 0, ν = 1, 2, . . . }. (13)

If the kernel K turns out to be finite-dimensional and, therefore, finitely graded, i.e., Kν = 0 for ν > d,
then Λ, as we see, is a real algebraic subset of a finite-dimensional real space.

If M̃0 = M0, i.e., the family of mappings that is parametrized by the set of parameters Λ consists of
automorphisms of M0, then the set Λ is naturally identified with some subgroup of automorphisms M0. We
denote this subgroup, which consists of automorphisms of the form χ = χ0+χ1+ . . . , by Autµ0 M0. These are
exactly the automorphisms of M0 that preserve the origin and the weight expansion of the complex tangent
at zero. We call this subgroup of the stabilizer of zero the µ-stabilizer. Using the correspondence λ→ χ(λ),
we can write

Λ ≈ Autµ0 M0.

Since the group Autµ0 M0 acts transitively on itself by left shifts, it follows that this action induces a transitive
action on Λ. If K is finite-dimensional, then Λ is a real algebraic variety without singularities.
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Denote the corresponding Lie algebra by autµ0 M0. This is a subalgebra of the complete stabilizer aut0M0,
which, in turn, is a subalgebra in the complete algebra autM0.

Denote the subgroup of automorphisms ofM0 consisting of the automorphisms of the form χ = Id+χ1+. . .
by G+(M0). Denote the subgroup of automorphisms of M0 consisting of automorphisms of the form χ = χ0

by G0(M0).
Before the general formulation of the result thus obtained, we present particular statements related to

the model surface Q.

Statement 4.
(a) G+(Q0) ≈ K, where K is a linear space.
(b) Autµ0 Q0 ≈ Λ(Q0) = G0 ⊔ K.
(c) Autµ0 Q0 = G0(M0)⋉G+(Q0) is a semi-direct product.

Thus,
– let µ be an arbitrary grading of the variable z,
– let there be two germs at the origin M0 and M̃0 of finite type m that are given by equations in the reduced
form

M0 = {vβ = Φβ(z, z̄, u) + Fβ(z, z̄, u)},
M̃0 = {vβ = Φβ(z, z̄, u) + F̃β(z, z̄, u)},

j = 1, . . . , q, Fβ = o(mβ), F̃β = o(mβ).

Our reasoning proves the following theorem.

Theorem 5: Let µ be an arbitrary grading of the variable z and let Q0 be a µ-model surface of the germ
M0; then
(a) G0(M0) is a subgroup of G0(Q0);
(b) the set Λ(M0) parameterizing the family of invertible mappings ofM0 on M̃0 of the form χ = χ0+χ

(1)+
χ(2) + . . . has the form (13);
(c) if autµ0 Q0 <∞, then Λ(M0) is a nonsingular real algebraic set and dimΛ(M0) ⩽ dim autµ0 Q0;
(d) dim autµ0 M0 ⩽ dim autµ0 Q0.

In connection with this theorem, it is appropriate to ask the following question. When dim autµ0 Q0 is
finite?

Statement 6: dim autµ0 Q0 <∞ if and only if the µ-model surface Q is of finite type and is holomorphi-
cally nondegenerate.

Proof. The sufficiency follows from the well-known theorem (see [11]). Let us show the necessity. The
necessity of the holomorphic nondegeneracy is obvious. If the µ-model surface Q is of infinite type, then
this means that there is a linear dependence among the coordinate forms of some weight. After a linear
transformation of the corresponding group of variables w, identical zeros occur among the coordinate forms.
This immediately gives the infinite-dimensionality. The assertion has been proven.

This assertion, as well as its proof, are quite similar to those that are available in the ordinary unweighted
approach [2]. Note that the conditions of assertion 6 are also a criterion for the finite-dimensionality of the
complete algebra autQ0.

In connection with this assertion, we recall the following definition. A germ is said to be nondegenerate
if it is of finite type and holomorphically nondegenerate. This definition does not depend on the choice of
µ. Therefore the nondegeneracy with respect to one weight means the nondegeneracy with respect to all
weights. The nondegeneracy of a µ-model surface Q implies the nondegeneracy of the corresponding germ.
The converse assertion fails.

5. Weighted model surface and its automorphisms
The weights introduced for the variables in the groups z and w can naturally be extended to the differ-

entiations. As a result, the Lie algebra of all infinitesimal holomorphic automorphisms of any germ becomes
a graded Lie algebra. We denote this graded Lie algebra by autµQ0. The introduction of the superscript µ
in the notation for the automorphism algebra stresses that different gradings of the variables of the group z
transform the same automorphism algebra into different graded Lie algebras.
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To the variables of the group wq of maximum weight mq there correspond the differentiations of the
highest negative weight −mq. Therefore, we can write

autµQ0 =

∞∑
ν=−mq

gν .

We can consider three subalgebras whose sum decomposes the complete algebra: g− =
∑

ν<0 gν , g0, g+ =∑
ν>0 gν ,

autµQ0 = g− + g0 + g+.

We directly verify the validity of the following assertion.

Statement 7.
(a) g0 is the Lie algebra of the group G0.
(b) The subgroup G0 contains a 1-parameter (grading) subgroup

(zα → tµα zα, wβ → tmβ wβ), t ∈ R∗ (14)

To this subgroup, there corresponds a vector field of weight zero,

X0 = 2Re (
∑

µα zα
∂

∂ zα
+

∑
mβ wβ

∂

∂ wβ
) (15)

(c) If X =
∑∞

ν=−mq
Xν ∈ autµQ0, then Xν ∈ autµQ0 for every ν.

(d) The µ-stabilizer of zero is the semidirect product G0 ⋊G+; correspondingly, aut
µ
0 Q0 = g0 + g+.

(e) autµQ0 is finite-dimensional if and only if autµQ0 is finitely graded, i.e., only finitely many weight
components gν are nonzero.

Thus, if Q is nondegenerate, then

autµQ0 =

d∑
ν=−mq

gν ,

where d is the highest nonnegative nonzero component.
Let ξ = (z = a, w = b) be a point of Q. Consider the first group of equations Q, namely, v1 = Φ1(z, z̄);

make the substitution z → a+ z, w1 → (b1 + iΦ1(a, ā)) + w1 and write out the resulting equations:

v1 = Φ1(z + a, z̄ + ā)− Φ1(a, ā) = Φ1(z, z̄) + d ,Φ1(z, z̄)(a, ā) + . . . .

If we assign the corresponding µ-weights to the parameters a, then all summands have the weight m1. If we
consider the weights only with respect to the variables z, then the first summand has the weight m1, and all
other ones have strictly lesser weights. Using the known procedure, we can write out this “truncated” surface
Q(1) in the reduced form. For this first step, the procedure is directed only to remove the pluriharmonic
terms. If summands of weight less than m1 remain, then we can recognize that the µ-type has changed and
can introduce new weights for the variables of the w1 group. If this did not happen, i.e., the equation Q(1)
returned to its previous form after reduction, then this means that there exists a holomorphic automorphism
Q(1) of the form

z → a+ z, w1 → b1 + w1 + P1(z, a, ā),

taking (z = 0, w1 = 0) into (z = a, w1 = b1 + iΦ1(a, ā)), where the weight of the polynomial P1 is strictly
less than m1.

Further, we pass to the consideration of the second “truncated” surface Q(2) given by the equations of
Q(1) and the group of equations of the form v2 = Φ2(z, z̄, u1) at the point (z = a, w1 = b1+ iΦ1(a, ā), w2 =
b2 + iΦ2(a, ā, b1)). Here the equations of Q(1) are new reduced equations. Now the construction procedure
of the reduced equations of Q(2) and the calculation of the µ-type at a new point are repeated again. If the
type is not changed, then we obtain a polynomial-triangular automorphism of Q(2) of the form

z → a+ z, w1 → (b1 + iΦ1(a, ā)) + w1 + P1(z, a, ā),

w2 → (b2 + iΦ2(a, ā, b1)) + w2 + P2(z, w1, a, ā, b1),
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such that it takes (z = 0, w1 = 0, w2 = 0) to (z = a, w1 = b1 + iΦ1(a, ā), w2 = b2 + iΦ2(a, ā, b1)), and the
weight P2 is strictly less than m2. And so on, until the last group of variables. We denote by Sξ the uniquely
defined polynomial-triangular “shift” constructed as the result of this process.

Let Q be a weighted model surface whose µ-type at the origin is equal to m. Let Qm be the collection of
points of Q such that, at these points, the µ-type is equal to m. Thus, for every point ξ ∈ Qm, there exists
a unique automorphism Sξ that is constructed as a result of the reduction of equations and takes the origin
to ξ. The totality of these “shifts” is a subgroup, which we denote by GS; we denote its algebra by gs.

To explicitly describe the fields in gs, we are to differentiate the triangular-polynomial replacements
obtained above with respect to the parameters (to select summands linear in parameters).

Let St be the stabilizer of the origin in the group AutQ0 of holomorphic automorphisms of Q, and let st
be the corresponding Lie algebra. It is clear that St is a subgroup and st is a subalgebra. Under the standard
(unweighted) approach, st is the sum of all nonnegative components of the algebra (i.e., g0 + g−). Under
the weighted approach, this is not the case in general. In this connection, we denote by st− the subalgebra
consisting of the fields included in to g− that vanish at the origin. The fields

X = (f, g) = (f1, . . . , fp; g1, . . . , gq),

belonging to st− are the fields that, in addition to the tangency condition for Q,

Im g = dΦ(z, z̄, u) (f, f̄ ,Reg), where w = u+ iΦ(z, z̄, u),

satisfy also the following conditions

f(0, 0) = 0, g(0, 0) = 0, the weight: fα < µα, the weight: gβ < mβ . (16)

On the other hand, the gs algebra is formed by the fields with the tangency condition such that

f(z, w) = a = const, g1 = b1 + p1(z, a), g2 = b2 + p2(z, w1, a, b1), . . . , (17)

where the polynomials pβ are uniquely recovered from the tangency condition; they have the weights less
than mβ and vanish at a = 0, b = 0.

This, we obtain the following assertion.

Statement 8.
(a) There is a decomposition of the subalgebra g− = gs+ st−.
(b) gs is the subalgebra corresponding to the subgroup of shifts GS.
(c) The orbit of the origin with respect to the full automorphism group AutQ0 coincides with the orbit of
the origin with respect to GS.

Let G+ be the subgroup of the automorphism group Q consisting of the automorphisms whose expansions
in terms of components have the form

χ = Id+ χ(1) + χ(2) + . . . .

These are the coordinate changes that we used when describing the Poincaré construction. Similarly, denote
by G− the subgroup of the automorphism group Q consisting of automorphisms whose component expansions
have the form

χ = Id+ χ(−1) + χ(−2) + · · ·+ χ(−mq).

While the decomposition of elements of G+ can, generally speaking, contain components with an arbitrarily
large number, note that the decomposition of G− is bounded from below by the number −mq, where mq is
the highest weight in the group of variables w. This automatically implies that the transformations in G−
are polynomial. Write St− = G− ∩ St.

We have the following assertion.

Statement 9. (a) To the subgroup G+ of automorphisms, there corresponds the Lie algebra g+.
(b) To the subgroup G− of automorphisms, there corresponds the Lie algebra g−.
(c) To the subgroup St− of automorphisms, there corresponds the Lie algebra st−.
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Thus, we have the decomposition autµQ0 = gs + st− + g0 + g+. These four subalgebras correspond to
four subgroups

GS, St−, G0, G+,

which were described above.

Concerning the subgroup St−, a statement holds that is completely analogous to Statement 3.

Statement 10/ If the model surface Q has finite µ-type and there is an automorphism (f(z, w), g(z, w)) ∈
St− such that f(z, w) = z, then g(z, w) = w, i.e., this is the identity mapping.

The proof carries over from Statement 3 without changes. .

Above (Theorem 5), using the recurrent Poincaré construction, we have showed that the dimension of the
µ-stabilizer of a point ξ in the automorphism group of the germ is estimated in terms of the dimension of
the µ-stabilizer of zero in the automorphism group of its model surface. However, in order to estimate the
entire stabilizer, it is necessary to estimate the dimension of St−(Mξ). To estimate the dimension of st−,
we have a complete analog of Theorem 5. However, there is a difference in the scheme of the proof. While
the proof of Theorem 5 is the application of the Poincaré construction to a family of mappings, the proof
of Theorem 11 is the Poincaré construction applied to vector fields. Moreover, the application of Poincaré’s
construction to estimate the dimensions of spaces of vector fields rather than a family of mappings enables
us to estimate the dimension of the algebra of the perturbed surface using the corresponding dimension for
the model one not only for st−(Mξ), but also for g−(Mξ) and for the entire aut (Mξ).

Theorem 11. Let µ be an arbitrary grading of the variable z and let Q0(µ) be the µ-model surface of
M0. Then

dim autM0 ⩽ dim autQ0(µ).

Proof. Let {v = Φ(z, z̄, u) + Ψ(z, z̄, u)} be a germ, let {v = Φ(z, z̄, u)} be the model surface, and let
Ψ(z, z̄, u) be the perturbation. That is, if Φj and Ψj are the coordinates of Φ and Ψ corresponding to wj ,
then Φj has the weight mj , and Ψj is the sum of components of greater weights, Ψj = Ψj(mj+1) + . . . .
We can write out the equation of the perturbed surface as an expansion in terms of components, namely,
v = Φ+Ψ(1) +Ψ(2) + . . . , where Ψ(ν) = (Ψ1(m1+ν), . . . ,Ψq(mq+ν)). It’ is clear that the 0-component of the
right-hand side of the equation is Φ. Let

X = 2Re

(∑
fi(z, w)

∂

∂zν
+
∑

gj(z, w)
∂

∂wj

)
= (f(z, w), g(z, w))

be a field in autM0 and let X =
∑

X(ν) be its expansion in the weight components. Then

X(ν) = (f (ν), g(ν)) = (f1(µ1+ν), . . . , fq(µq+ν); g1(m1+ν), . . . , gq(mq+ν))

is the set of coefficients of X(ν) (the ν-component of the field). Writing out the tangency condition, we obtain

L(f, g; Φ,Ψ) = −Im g(z, w) + 2Re (∂z(Φ(z, z̄, u) + Ψ(z, z̄, u))(f(z, w)))

+∂u(Φ(z, z̄, u) + Ψ(z, z̄, u))(Re g(z, w)) = 0,

where w = u+ i (Φ(z, z̄, u) + Ψ(z, z̄, u)). (18)

This linear expression (AN operator) L(f, g; Φ,Ψ) is the sum

L(f, g; Φ,Ψ) = L(f, g; Φ) + L′(f, g; Φ,Ψ),

where L(f, g; Φ) = L(f, g; Φ, 0). That is, L(f, g; Φ) = 0 is the record of the fact that the field (f, g) is tangent
to the model surface Q, and all terms L depending on Ψ are collected in L′. Let us write relation (18) as
the vanishing condition of its components. It is clear that, if the exponent ν is small enough (ν < −mq),
then X(ν) = 0, and the relation in this component gives no relations for the field coefficients. We obtain the
first meaningful relation for ν = −mq. We have X(−mq) = (0, . . . , 0; 0, . . . , 0, gq0), where [gq0] = 0, i.e., gq0
is constant. A nontrivial relation for the (−mq)-component in (18) is Im gq0 = 0. The next (−mq + 1)-th
component involves X(−mq+1) = (f (−mq+1), g(−mq+1)) and X(−mq), etc., and the ν-th component of (18)
has the form

L(f (ν), g(ν)) + terms depending on (f (ν−1), g(ν−1)), (f (ν−2), g(ν−2)), . . . = 0.
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That is, this system of linear relations has the property of triangularity. This enables us to estimate the rank
of the complete (perturbed) system L(f, g; Φ,Ψ) = 0 using the rank of the model system L(f, g; Φ) = 0. As
a result, we obtain an estimate for the dimension. The theorem has been proven.

Remark 12. (a) The property of triangularity of system (18) noted in the proof enables us to make a
more precise statement. Let ν ∈ Z; denote by Vν the subspace of the space vector fields such that their
weight decomposition does not contain components of weight less than ν. Then we can claim that

∀ ν dim(autM0 ∩ Vν) ⩽ dim (autQ0 ∩ Vν).

(b) The reasoning given in the proof applies not only to the full automorphism algebra but also to any of
its subalgebras. In particular, for these subalgebras, we can take gs and st−. Then we obtain

dim gs(M0) ⩽ dim gs(Q0), dim st−(M0) ⩽ dim st−(Q0).

Since the condition for the holomorphic homogeneity of the germ is the relation dim gs(M0) = dimM =
2n+K, it follows from the first inequality that any model surface of a holomorphically homogeneous germ
is holomorphically homogeneous. This assertion was previously proven in [20].
(c) The dimension of the automorphism algebra of the germ does not depend on the µ-gradings and, therefore,
the inequality in Theorem 11 can be replaced by

dim autM0 ⩽ min dim autQ0(µ) over all µ.

As in [2], introduce the concept of highest weight for the µ-type m = ((m1, k1), . . . , (mq, kq)), namely, we
set λ = λ(m) = mq. To have the ability to speak about the µ-type of a surface at a point ξ of this surface,
we introduce the notation m(ξ); then the highest weight at the point ξ is λ(ξ) = λ(m(ξ)). Next, we define
the following subsets of Q:

Qm′ = {ξ ∈ Q : m(ξ) = m′}, Qλ′
= {ξ ∈ Q : λ(ξ) = λ′}

A subset of a real affine space is said to be semi-algebraic if it is given by conditions of the form {R1(x) =
0, R2(x) ̸= 0}, where R1 and R2 are two finite sets of real polynomials.

Theorem 13.
(a) Let ξ ∈ Q; then the highest weight at ξ does not exceed the highest weight at zero, i.e., λ(ξ) ⩽ λ(0).
(b) The sets Qm′ and Qλ′

are semi-algebraic for any m′ and λ′.
(c) The set of values of the functions m(ξ) and λ(ξ) is finite.

Proof. Part (a) follows from our consideration of the procedure of constructing the reduced form of
equations at a point of the model surface. Part (b) is obvious. The assertion of point (c) concerning the
function λ(ξ) follows from (a). The assertion concerning m(ξ) follows from the fact that, for chosen highest
weight and codimension, there are only finitely many µ-types m′.

Theorem 14. Let the µ-model surface Q be nondegenerate and holomorphically homogeneous. Then the
group of its holomorphic automorphisms AutQ is a subgroup of the birational automorphism group CN

(the Cremona group) consisting of mappings of uniformly bounded powers d(χ). The constant bounding the
powers depends only on N ,

d(χ) ⩽ C(N).

Proof. The scheme of proving such assertions, going back to V. Kaup [12], was used many times (see[14]).
Since the holomorphic homogeneity is realized by polynomial-triangular shifts, it suffices to prove this as-
sertion for the element of the stabilizer. To this end, the polynomiality of fields with a bound for the degree
and the presence of a grading field are required. All this is present in our situation. Thus, the theorem is
proved.

The question of the holomorphic homogeneity of a manifold is very subtle. In [16], for model surfaces
(regular, unweighted), a simple criterion was given. It was shown that a point of the model surface falls
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into orbit of the origin if and only if its Bloom–Graham-type is the same as the Bloom–Graham type of the
origin. This criterion remains valid for weighted model surfaces as well.

Theorem 15: Let Q be the µ-model surface and let ξ be a point of Q. This point belongs to the orbit
of the origin in the automorphism group Q if and only if the Bloom–Graham–Stepanova µ-type of Q at the
point ξ coincides with the µ-type of Q at the origin.

Proof. If the µ-type of Q at the point ξ coincides with the µ-type Q at the origin, then the automorphism
is constructed as follows. We move the origin to the point ξ, re-expand the defining polynomials in the
new coordinates, and start the process of constructing the reduced form of new equations. As a result, the
equations take the same form (otherwise the type changes) as that at the origin. In this way, a triangular-
polynomial automorphism is obtained that sends the origin to ξ. Conversely. Let there be an automorphism
χ taking the origin to ξ. It can be represented as a composition of two automorphisms χ = χ0 ◦ χ̃, where
χ0 is an element of the zero stabilizer and χ̃ ∈ GS is an element of G−, which is identical on the complex
tangent. Then χ̃ = χ = (χ0)

−1 ◦ χ. This is an automorphism taking the origin to ξ with the identical action
on the complex tangent. Such mappings preserve the type. Hence the µ-types at zero and ξ are the same.
The theorem has been proven.

Corollary 16. The µ-model surface Q is holomorphically homogeneous if and only if all its points have
the same µ-type (the Bloom–Graham–Stepanova type with the weight µ).

6. Examples of holomorphically homogeneous µ-nondegenerate model surfaces
As the first example of a holomorphically homogeneous µ-model surface we propose the hypersurface

(1) as mentioned in the introduction. In this example, the type has the following form:(
(µ1 = 1, n1 = 2), (µ2 = 2, n2 = 1), . . . , (µp = p, np = 1); (m1 = p+ 1, k1 = 1)

)
,

where p ⩾ 1, q = 1, n = p+ 1, N = p+ 2.

For the convenience of the reader, and as an illustration of the general considerations made above, we
give here a description of the automorphisms of the first hypersurface in this series [14] (Theorem 15). Let
p = 2, n = 3, N = 4. We obtain a hypersurface of the space C4,

Q = {v = 2Re(z1 ζ̄ + z2 ζ̄
2)} (19)

The weights are assigned as follows:

[z2] = [ζ] = 1, [z1] = 2, [w] = [u] = 3.

For brevity, we write out the vector field of the form

X = 2Re

(
f1

∂

∂z1
+ f2

∂

∂z2
+ h

∂

∂ζ
+ g

∂

∂w

)
in the form (f1, f2, h, g). The algebra AutQ has the form g−3 + g−2 + g−1 + g0 + g1, and

g−3 = {( 0, 0, 0, d )}, (20)

g−2 = {( a, 0, 0, 2 i ā ζ )},
g−1 = {( −2 c̄ z2 + i e ζ, b, c, 2 i c̄ z1 + 2 i b̄ ζ2 )},

g0 = {( α1 z1 − ᾱ2 ζ
2, (2α2 − α3) z2 + α2 ζ, (α3 − ᾱ1) ζ, α3 w )},

g1 = {( 2 i β̄1 z1 ζ + β1 w, 2 i β̄1 z2 ζ − i β1 z1 + i β2 ζ
2, i β̄1 ζ

2, 2 i β̄1 ζw )},
a, b, c, α1, α2, β1 ∈ C, d, e, α3, β2 ∈ R. (21)

We write g−1 as a direct sum g′−1 + st−, where

g′−1 = {(−2 c̄ z2, b, c, 2 i c̄ z1 + 2 i b̄ ζ2)},
st− = {(i e ζ, 0, 0, 0)}.
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Then the algebra gs corresponding to the group GS of “shifts” has the form gs = g−3 + g−2 + g′−1. It is
parametrized by the set (a, b, c, d); respectively, dim gs = 7. The subgroup GS itself, which provides the
holomorphic homogeneity of Q, consists of transformations of the form

z1 → A+ z1, z2 → B + 2 Ā ζ + z2, ζ → C + ζ,

w → D + 2 i (AB̄ +A2 C̄ + (B̄ + 2A C̄) z1 + Ā z2 + Ā2 ζ + C̄ z21) + w, (22)

where (A,B,C,D) is an arbitrary point of Q.
We have dim st− = 1, the field (i ζ, 0, 0, 0) generates the group St− which has the form

z1 → z1 + i t ζ, z2 → z2, ζ → ζ, w → w.

The algebra g0 is parametrized by the family (α1, α2, α3); respectively, dim g0 = 5. To calculate the group
G0 corresponding to g0, write γ = α1 + ᾱ1 − α3. If γ ̸= 0, then we obtain

z1 →
(
z1 − ᾱ2

(
eγ t − 1

γ

)
ζ2
)
eα1 t,

z2 →
(
z2 + α2

(
e1−γ̄ t

γ̄

)
ζ

)
e(2α1−α3) t,

ζ → ζ e(α3−ᾱ1) t, w → w eα3 t.

The degenerate directions γ = 0 are obtained by passing to the limit.
The subalgebra g+ consists of a single component g1, which is parameterized by the set (β1, β2), respec-

tively, dim g1 = 3. The field (0, i ζ2, 0, 0) in g1 (β1 = 0, β2 = 1) generates the transformation

z1 → z1, z2 → z2 + i t ζ2, ζ → ζ, w → w. (23)

The transformations in g1 with β2 = 0 have the form

z1 → z1
(1− i β̄1 ζ t)2

, z2 → z2 − i β1 z1 t

(1− i β̄1 ζ t)2
,

ζ → ζ

1− i β̄1 ζ t
, w → w

(1− i β̄1 ζ t)2
. (24)

The transformations (23) and (24) generate the group G+ corresponding to g+.

As the second example of holomorphically homogeneous µ-model surface, we can propose a hypersurface
from [21]. This is a hypersurface in the space Cn+1 with the coordinates (z1, . . . , zn, w = u + i v) given by
the equation

v = 2 Re(z1z̄2 + z21 z̄3) +
n∑
4

±|zj |2.

In this example, the type has the following form:(
(µ1 = 2, n1 = 2), (µ2 = 4, n2 = 1), (µ3 = 3, n3 = n− 3); (m1 = 6, k1 = 1)

)
,

This hypersurface is holomorphically homogeneous, 2-nondegenerate, the dimension of its group of automor-
phisms is equal to n2 + 7, and this is the maximum in the class of such hypersurfaces [21].

Third example. The hypersurface from [22]. This is a hypersurface in the space Cn+1 with the coordi-
nates (z1, . . . , zn, w = u+ i v) given by the equation

v = 2 Re(z1z̄2) + |z1|4 +
n∑
3

±|zj |2. (25)

In this example, the type has the following form:(
(µ1 = 1, n1 = 1), (µ2 = 3, n2 = 1), (µ3 = 2, n3 = n− 2); (m1 = 4, k1 = 1)

)
,
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This hypersurface is holomorphically homogeneous and 1-nondegenerate (Levi nondegenerate). In the class of
these hypersurfaces, the group of the nondegenerate standard hyperquadric {v =< z, z̄ >}, where < z, z̄ >
is a nondegenerate Hermitian form, has the maximum dimension (n + 2)2 − 1. The hypersurface (25) is
submaximal, i.e., realizes the next, after that of the hyperquadric, maximum value of the dimension of the
group, equal to n2 + 4.

Fourth example. A family of hypersurfaces from the list of the paper [23]. These are hypersurfaces in
the space C3 with the coordinates (z1, z2, w = u+ i v) given by the equations v = 2 Re(z1)Re(z2)+Re(z1)

m

(m is an arbitrary positive integer),(
(µ1 = 1, n1 = 1), (µ2 = m− 1, n2 = 1); (m1 = m, k1 = 1)

)
,

These tubular hypersurfaces are holomorphically homogeneous and Levi nondegenerate. The hypersurfaces in
the examples three and four are some generalizations of the Winkelmann hypersurfaces v = 2Re(z1 z̄2)+|z1|4.

All the examples considered here are hypersurfaces. Using hypersurfaces, one can obtain examples of
higher codimension by considering their direct products. But this is far from the only possibility.

Since all these µ-model hypersurfaces are nondegenerate and holomorphically homogeneous, it follows
that Theorem 11 applies to them, i.e., their automorphisms are birational.

7. Completely µ-nondegenerate model surfaces and the Tanaka theory
It is also possible to offer a fairly wide class of examples of homogeneous model hypersurfaces for an

arbitrary weight µ. These µ-model surfaces are natural generalizations of ordinary completely nondegenerate
model surfaces [15].

Let us choose an arbitrary grading of the variable z

µ = ((µ1, n1), (µ2, n2), . . . , (µp, np))

and consider the sequence of spaces of reduced polynomials Nν of all positive integer weights. We do not
claim, however, that all κν = dim Nν > 0. Renumber the nonzero spaces by N . We index them by the step
number at which they occur (i.e., we skip the null spaces) rather that by the weight.

It is clear that the first (minimum) possible weight for a nonzero space is 2µ1. Here N1 is the space of
Hermitian forms in z1. The dimension of this space is κ1 = n21. Correspondingly, we introduce the variable
w1 and write m1 = [w1] = 2µ1 and k1 = κm1 = n21.

Further, among the given polynomials in z1, z2, u1, one should choose a subspace of polynomials of the
weight that is minimal after 2µ1. If µ2 < 2µ1, then this weight is equal to µ1+µ2; if not, then to 3µ1. After
this, we introduce the variable w2 and set m2 = [w2] equal to the second weight and write k2 = κt2 . And so
on. We stop at an arbitrary q-th step. Now, for β = 1, . . . , q− 1, we set Φβ to be equal to the family of basic
forms of the space Nβ and Φq to an arbitrary linear independent family (Φ1

q, . . . ,Φ
k
q ) of elements of Nq, i.e.,

1 ⩽ k ⩽ kq. As a result, in the space Cn+K , n =
∑p

1 nα, K = (
∑q−1

1 kβ + k) we obtain the surface

Q = {vβ = Φβ(z, z̄, u), β = 1, . . . , q} (26)

Note that the arbitrariness in the choice of such a surface is the arbitrariness in the choice of q and of the
family of coordinates of the highest weight form Φq.

Statement 17:
(a) Every such surface Q is of finite µ-type.
(b) Every such surface is holomorphically homogeneous.
(c) If mq ⩾ 2µp + 1, then Q is holomorphically nondegenerate.
(d) Two such surfaces with the same parameter q and the same highest forms Φq are linearly equivalent.
(e) If the multiplicity of the highest weight kq takes the maximum value kq = dimNq, then all model surfaces
are linearly equivalent (i.e., such a surface is unique).

Proof/ (a) By construction, Q has a finite µ-type at zero. (b) holds because the re-expansion of equations
at an arbitrary point by triangular-polynomial transformations reduces to the original form. (c) holds since
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this is a consequence of the fact that, under this condition, the space N1+ · · ·+Nq−1 contains the space of all
Hermitian forms in z. (d) holds since one of these surfaces is transformed into another by the transformation

z → z, wβ → ρβ wβ , β = 1, . . . , q − 1, wq → wq,

where ρβ is a real nondegenerate linear transformation that makes the transition from one basis to another
in the corresponding space. (e) If kq = dimNq then the coordinates of Φq form a basis of Nq, and any two
bases are connected by a nondegenerate linear transformation. The assertion has been proven.

Definition 18. If the surface Q constructed above is holomorphically nondegenerate, then we call it a
completely µ-nondegenerate model surface of the highest weight mq.

To any completely µ-nondegenerate model surface Theorem 12 applies, i.e., the group of holomorphic
automorphisms of the surface consists of birational transformations of uniformly bounded powers.

The ordinary, unweighted, completely nondegenerate model surfaces have the following property. If the
highest degree of the model completely nondegenerate surface Q is greater than two, then g+ = 0.

Thus, the completely nondegenerate model surfaces are divided into two classes: the nondegenerate
quadrics for which the highest degree is l = 2 and for which g+ may be nontrivial, and the others, which
have l ⩾ 3 and no g+ component. There is another important difference between these two classes. The
criterion for the finite-dimensionality of the algebra of a quadric is given by two conditions: the linear inde-
pendence of the Hermitian forms and the absence of their common kernel. Two general requirements turn
into these simple conditions for a quadric: the finiteness of the Bloom–Graham-type and the holomorphic
nondegeneracy. Here the holomorphic nondegeneracy does not follow from the single finiteness condition
for the type. However, for l ⩾ 3, the requirement of complete nondegeneracy is a condition only on the
Bloom–Graham-type. The holomorphic nondegeneracy follows from this condition on the type.

For our weighted analog of complete nondegeneracy, we can also introduce a partition into such classes.
Consider the sequence {Qs}, s = 2, 3, . . . , where Qs is the last (i.e., for which all multiplicities are maximal)
model completely µ-nondegenerate surface of the highest weight s.

Lemma 19: There exists an s such that all Qs are holomorphically nondegenerate for s ⩾ s.

Proof. Starting from some s, all spaces Ns contain the space of all Hermitian forms in z. Therefore, if
the multiplicity of the weight s is equal to the dimension of Ns, then, among the right-hand sides of the
equations defining Qs, a basis of the space of Hermitian forms is contained. This ensures the holomorphic
nondegeneracy. The lemma is proven.

Definition 20. We call the least of the weights s whose existence is proved in the lemma the critical
weight.

It is clear that the critical weight depends on the choice of the basic set of weights µ, i.e., s = s(µ).

Now we are ready to formulate a weighted analog of the g+-conjecture.

The weighted g+-conjecture. Let Q be a completely µ-nondegenerate model surface of highest weight
l = mq such that l > s(µ); then g+ = 0.

In the proof of the standard g+-conjecture ([17], [18], [19]), N. Tanaka’s theory plays a significant role. The
central concepts of this theory are a fundamental graded algebra, the Tanaka continuation, and the standard
model. The bridge between the theory of holomorphically homogeneous model surfaces and Tanaka’s theory
is the algebra g−, which is fundamental in the Tanaka theory.

Tanaka’s theory is not directly applicable to weighted model surfaces. In this new situation, g− is not
fundamental. However, after some editing of Tanaka’s theory, a connection with the theory of holomorphically
homogeneous weighted model surfaces is restored.

How should Tanaka’s theory be changed? Here is a small sketch of these changes.
The first modification concerns the notion of a fundamental graded algebra. Let g =

∑−1
−l gj be a finite-

dimensional graded Lie algebra. Let it be generated (as a Lie algebra) by the following family of its compo-
nents:

g−µ1 , g−µ2 , . . . , g−µp .
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It is not assumed here that all g−ν are nonzero for all 1 ⩽ ν ⩽ l. We call such an algebra a µ-fundamental
graded Lie algebra. If, in addition, g−l ̸= 0, then we say that this is an algebra of the highest weight l. It is
clear that such an algebra is an analog of our subalgebra gs.

We say that such a µ-fundamental algebra g is nondegenerate if it follows from the fact that Y ∈ g
commutes with all generators g−µ1

, g−µ2
, . . . , g−µp

that Y = 0.
As for an analog of the Tanaka continuation, here a new phenomenon occurs. This is the ability to

extend g by adding new negative components. From the algebraic point of view, every such field defines
an endomorphism of the algebra g. Therefore, these (negative) weight components of the extension are
constructed as spaces of endomorphisms with the necessary family of conditions (the Jacobi identity). We
thus obtain a family of new negative components st−. This is an analog of our component st−. After this,
just as above, we can define the component g0 as the space of derivations on g− = g + st− (an analog of
our g−). Further, as in the unweighted case, the sequence of components of positive weights is recursively
constructed as spaces of operators on the already constructed components with a condition imitating the
Jacobi identity. That is, we obtain g+ = g1 + g2 + . . . (an analog of our g+).

One can hope (but this needs a proof) that, if g is µ-fundamental and nondegenerate, then
(a) there exists a j > 0 such that gj = 0;
(b) if, for some j > 0, it turns out that gj = 0, then gj+1 = 0; i.e., in this case, the extension of the algebra
g is finitely graded and finite-dimensional;
(c) an analog of the standard model G(g), as a CR-manifold, is equivalent to G− for a holomorphically
homogeneous weighted model surface for which gs = g.

If we plan to use this technique for our purposes, then we need to equip the generators g−µ1
, g−µ2

, . . . , g−µp

with a complex structure J . In this case, we shall say that we have a CR-fundamental µ-graded Lie algebra.
Analogously, we can construct the standard model, which is a holomorphically homogeneous CR-manifold

whose Bloom–Graham type is encoded by the algebra g. In particular, g−µ1
+g−µ2

+ · · ·+g−µp
is its complex

tangent. To this end, we should consider the connected Lie group G generated by g as a real submanifold in
the complex Lie group Gc generated by the complexification gc of g.

Completely analogously to the concept of a CR-universal fundamental graded Lie algebra, we introduce
the notion of a CR-universal µ-fundamental graded Lie algebra. This is a fundamental graded Lie algebra g
such that, in the process of its generation by the base set {g−µj}, the growth dimension is maximal under
every commutation of two components.

The question concerning the triviality of the components of positive weight for the universal weighted
algebra is an algebraic version of the weighted g+-hypothesis formulated above for weighted completely
nondegenerate model surfaces.

The weighted g+-hypothesis (an algebraic version): Let g be a nondegenerate CR-universal µ-fundamental
Lie algebra of highest weight l such that l > s; then g+ = 0 (there are no extensions of positive weight).

The definition of critical weight appeals to concepts external for the theory graded algebras. To avoid
this, the last condition can be be replaced by the sufficient inequality l > 2µq.

8. Multi-weight technique and an estimate for the dimension of the automorphism algebra
The model surfaces are interesting primarily because every model surface is most holomorphically sym-

metric with respect to its perturbations (see Theorem 5). The multi-weight technique, i.e., the usage of
different weights in the problem of constructing a bound for the dimension of a group of local holomorphic
automorphisms opens up very broad prospects.

Let M be a real analytic holomorphically nondegenerate generating CR-submanifold of a complex linear
space CN . If M is of infinite Bloom–Graham type everywhere, then the question of dimension of the local
groups of automorphisms of germs of such a manifold was recently and quite in detail analyzed in the paper
of M. Stepanova [10]. At a point in general position, such a local group has the dimension either zero or
infinity. On a singular proper analytic subset, a positive dimension is possible.

Therefore, we can confine ourselves to considering the case of a manifold having a finite type at the
point in general position. Moreover, in this case, for the problem to estimate the dimension, we can confine
ourselves to an estimate at a point of finite type. This estimate, obviously, remains valid on the singular
subset, which is a proper analytic subset.

Thus, letMξ be the germ ofM and let n be its CR-dimension and K its codimension. Then we can choose
local coordinates at the point ξ in such a way that the germ equation takes the form Imw = F (z, z̄,Rew),
where (z ∈ Cn, w = u + i v ∈ CK) arethe coordinates of the ambient space, and the real analytic vector
function F and its first derivatives vanish at the origin.

We arbitrarily split the number n into a sum of positive summands n = n1 + · · ·+ np. Correspondingly,
the decomposition of Cn into a direct sum of summands of the form Cnα arises. We assign weights, also
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arbitrarily, for the elements of each direct summand; let [zα] = µα, where (µ1, . . . , µp) is an increasing
sequence of positive integers. This forms a weight decomposition µ = ((µ1, n1), . . . , (µp, np)) of the variable
z. In accordance with the procedure described above, a weighted decomposition w = (w1, . . . , wq) among
the variables of the group w also occurs and, according to the Bloom–Graham–Stepanova type, all weights
and multiplicities will be assigned. After some polynomial change of coordinates, the germ equation can be
written in a reduced form, and we obtain a model surface Q. If Q′ is another model surface of the same
germ with the same choice of partition into nα (multiplicities) and the weights µα, then Q

′ is equivalent to
Q. The mapping is carried out by an invertible quasilinear mapping (Statement 2, (b)). In this sense, such
a model surface is unique. For the chosen germ of Mξ, it depends only on µ. Denote it by Q(µ).

An obstacle to obtaining an estimate is the holomorphic degeneracy of the model surface for any choice
of weight µ. Consider, for a chosen germ of finite type Mξ, a countable collection of weighted model surfaces
Q = {Q(µ,Mξ)} for all possible µ.

Definition 21: A germ Mξ is called regular if there exists a weight µ such that the corresponding model
surface Q(µ,Mξ) is nondegenerate (a finite type plus the holomorphic nondegeneracy). The set of such
weights M(Mξ), which is not empty in this case, is called the set of regular weights.

It is clear that a regular germ is of finite type. For the regular germs, from Theorem 10, we immediately
obtain the following assertion.

Statement 22. Let Mξ be a regular germ, then

dim autMξ ⩽ min dim autQ0(µ,Mξ) over all regular weights.

Note that the germ of general position is regular, although this does not remove all questions.
As an example of an irregular hypersurface in C3, one can suggest the well-known “light cone′′ which, in

coordinates zj = xj + i yj , j = 1, 2, 3, is given by the equation y23 = y21 + y22 , y3 > 0.
The approach we are describing is not directly applicable to incorrect manifolds and their germs. They

require a special approach. As such an approach, in [13] and [14], a procedure of estimating based on
the modified Poincaré construction was proposed (the recursion on depth greater than one). However, this
procedure is technically more complicated.

The use of model surfaces in the study of automorphisms of a germ has obvious motivation. The germ
Mξ is an analytic object, and its model surface Q(Mξ, µ

0) is an algebraic object. The model surface and
its automorphisms are simpler than the original germ and its automorphisms. It should still be noted here
that, if the dimension of the space is large, then the polynomial quasi-homogeneous forms Φ that define the
equations of the model surface are polynomials of a large number of variables, and the general model surface is
not available for direct analysis. However, replacing the initial regular weight µ0 by some other regular weight
µ1 (for Q0), we can assign to the old model surface Q0 = Q(Mξ, µ

0) a new model surface Q1 = Q(Q0, µ1).
Applying Theorem 18 once again, we obtain an estimate for the dimension of automorphisms of the original
germ Mξ in terms of the dimension of automorphisms of Q1. This operation can be repeated, reducing the
number of nonzero monomials in the current quasi-homogeneous forms Φ. In this case, the model surface
becomes simpler, but the resulting estimate may be worse. The process ends as soon as we obtain the model
surface for which there is no next regular weight. Note that, at each step, starting from zero, we have the
right to choose an arbitrary regular weight with respect to the starting germ or to the current model surface.
Thus, there can be a lot of such chains. Each of these chains, in finitely many steps, ends with its terminal
link Q∞ obtained by choosing the weight µ∞. And, as an estimate for the automorphisms of the original
germ, we can suggest the dimension of the automorphisms of Q∞. This last model surface in the chain is a
function of the starting germ Mξ and of the chain of weights

Z = (µ0 → µ1 → · · · → µ∞).

In this case, we say that the string Z is a regular chain for Mξ and that Q∞ = Q∞(Mξ,Z). Here we can
write

dim autMξ ⩽ dim autQ∞
0 (Mξ,Z).

Let us consider more carefully the case of a hypersurface in the space Cn+1 with coordinates z =
(z1, . . . , zn), w = u + i v. The germ of a hypersurface Γ0 is the graph of a real analytic function of the
form

{v = F (z, z̄) + uG(z, z̄, u)}, F (z, z̄) =
∑

cαβ z
α z̄β , α ∈ Zn

+, β ∈ Zn
+.
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The coefficients cαβ satisfy the conditions for the convergence of the series and its real values. We may
also assume that the decomposition of F does not contain pluriharmonic terms, i.e., F (z, 0) = 0. To the
function F one can also assign the support of the series, which is the set of lattice nodes Z2n

+ for which
the corresponding monomial has a nonzero coefficient, and the convex hull N of the support, the Newton
polytope.

At the zero step, we choose the regular weight µ0 = (µ0
1, . . . , µ

0
n), i.e., we assume that the weights of zν

and z̄ν are equal to µ0
ν , and we obtain a nondegenerate polynomial model surface

Q0 = {v = P 0(z, z̄) =
∑

p0αβ z
α z̄β},

where P 0 is a quasi-homogeneous polynomial in (z, z̄) of some weight m0 ⩾ 2 without pluriharmonic terms.
Thus, the multi-indices (α, β) ∈ Z2n

+ are connected by the linear relation

µ0
1 (α1 + β1) + · · ·+ µ0

n (αn + βn) = m0.

This relation singles out some finite-dimensional subspace of the space of monomials, let N0 be the Newton
polytope of P 0. The following weight µ1 = (µ1

1, . . . , µ
1
n) gives us a new grading, which, using the relation

µ1
1 (α1 + β1) + · · ·+ µ1

n (αn + βn) = m1.

cuts out some face N1 of lesser dimension on the polytope N0. And so on, up to the terminal weight µ∞.
Here we obtain a model surface Q∞ and its polyhedron N∞, which provide the maximum simplification for
this chain. It is clear that the number of steps is bounded by the dimension of the space, i.e., by the number
2n.

Our algorithm works by reducing the complexity of the model surface and stops at the threat of obtaining
a holomorphically degenerate model surfaces. An alternative approach can be proposed that starts with
the simplest holomorphically degenerate surface and, moving towards the complication, stops when the
holomorphic nondegeneracy is reached. Let us start from an arbitrary vertex V0 on the boundary of the
original polytope N (strictly speaking, this is a pair of symmetrical vertices). The starting model surface
is the graph of the real part of this monomial. The weight µ0 is chosen in such a way that the support
hyperplane passing through V0 has no other intersections with N. The verification for the holomorphic
nondegeneracy is carried out as a test for finite nondegeneracy. If surface is holomorphically degenerate,
then we choose the second monomial, the vertex V1 adjacent to V0 on the boundary of N. The weight µ1 is
chosen in such a way that the support hyperplane passing through the edge [V0, V1] has no other intersections
with N. The verification for the holomorphic nondegeneracy. And so on, until achieving the holomorphic
nondegeneracy. It should be noted that the model surface whose equation does not relate all coordinates
cannot be holomorphically nondegenerate.

It is natural to call the first algorithm described here as the descending one and the other as the ascending
one.

A monomial model hypersurface is a hypersurface of the form {v = 2Re(zα z̄β)}. If z is a variable of
dimension n = 1 or n = 2, then such a hypersurface can be holomorphically nondegenerate. Here are
examples.

{v = |z|2} for n = 1,

{v = 2Re(z1 z̄2)} for n = 2.

This is impossible if n ⩾ 3.

Statement 23. If n ⩾ 3, then the hypersurface Γ = {v = 2Re(zα z̄β)} is holomorphically degenerate.

Proof. The holomorphic degeneracy of a real analytic manifold is equivalent to its holomorphic degeneracy
at an arbitrary point. For α = β, consider the change of coordinates of the form z1 → zα; for α ̸= β, the
change z1 → zα, z2 → zβ (other coordinates are kept). At the point in general position, this holomorphic
change is locally invertible. After this change, the equations of the hypersurface become v = |z1|2 or v =
2Re(z1 z̄2). The equations do not contain some coordinates, and thus both the hypersurfaces and their
preimage Γ are holomorphically degenerate.

Applying similar considerations, one can show that the minimum number of monomials ensuring the
holomorphic nondegeneracy is equal to {n+1

2 } ({x} is the integer part of x). In this connection, we can
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suggest the following improvement of the second (ascending) proposed algorithm. One should start its work
from the edge of the dimension {n+1

2 } rather than from a vertex of the polytope.
There are many degrees of freedom in the operation of this algorithm. This is the freedom to choose faces of

growing dimensions, or, which is the same, in the choice of weights defining them. The termination condition
of the algorithm is the achievement of the holomorphic nondegeneracy. The holomorphic nondegeneracy is
equivalent to the finite nondegeneracy at a point in general position. Therefore, the choice of a face and a
weight should be subject to the condition of growth of the dimension of the set of derivatives of the gradient
of the defining polynomial (see the definition of finite nondegeneracy).

The result of work of these algorithms, both descending and ascending, is a minimal model surface. That
is. a holomorphic nondegenerate surface, which is model with respect to the original germ, and such that
removing any of its monomials makes it holomorphically degenerate.

9. Questions for the future

In connection with the approach described above to estimating the dimension, the following questions are
of interest.

Question 24. Find a constructive criterion for the regularity of a germ.
Further, possibly there are explicit ways to extract a model subset from the original polytope N rather

than obtaining it as the result of a work of the algorithm. Such a method would be of undoubted interest.

It is impossible to simultaneously simplify the model subset and to minimize the resulting estimate for
the dimension of the automorphism algebra. If we refuse the simplicity and are looking for a model surface
with the least dimension, then, as we can readily understand, we are to choose model subsets of N lying in
the boundary hyperfaces. However, there are several hyperfaces.

Question 25. How to find the boundary facet of N such that the corresponding model surface gives the
minimum dimension of the algebra of automorphisms? Or, which is the same, how to find the corresponding
weight?

Question 26. The weighted g+-conjecture formulated in item 5. The conjecture has two forms: a geometric
and an algebraic.

And in general, placing the theory of model surfaces in a new weighted context, we can consider all the
old questions from the weight point of view. It makes sense in connection with the both proven statements
and hypotheses (see the list in the end of [2]).
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