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Abstract. It is proved that the graded Lie algebras of infinitesimal holomorphic automorphisms of
a nondegenerate quadric of codimension k do not have weight components more than 2k. It is also
proved that, for k � 3, there are no graded components of weight greater than 2. Several questions
are formulated.
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1. INTRODUCTION

It was recently discovered [1] that the proof of one of my 1990 statements [2] contains an error. We are
talking about the theorem on page 19, which, in particular, implies that the graded Lie algebra autQ of
infinitesimal holomorphic automorphisms of a nondegenerate quadric Q of arbitrary codimension consists of
at most five weight components:

autQ = g−2 + g−1 + g0 + g1 + g2.

In [1], a counterexample to this assertion, namely a quadric of codimension five in C9 was given and,
among the counterexamples in [3], there is a quadric of codimension four in C10. We call these quadrics (i.e.,
nondegenerate quadrics whose algebra contains fields of weight greater than two) exceptional. All known
examples of exceptional quadrics are very complicated. The nature of these rare examples remains unclear
at present.

The paper is structured as follows. In Sec. 1, for a vector field, we analyze the membership conditions to
the algebra of automorphisms in the context of the Ehrenpreis–Palamodov theorem. This is the technique
of a work with systems of linear differential equations with constant coefficients which led to a criterion for
the finite-dimensionality of the Lie algebra of infinitesimal holomorphic automorphisms of a quadric [5]. In
Theorem 5, a criterion for the exceptionality of a quadric is given. In Sec. 2, we apply the criterion thus
obtained to the study of quadrics of the CR-types (3, 3) and (3, 4). The use of classifications constructed in
the works of Palinchak [8] and Anisova [9] enables us show that there are no exceptional quadrics among
these types. Section 3 discusses the situation with quadrics of small codimensions. The main result, Theorem
19, is the assertion that there are no exceptional quadrics in codimension three. In Sec. 4 we return to the
context of Sec. 1. A certain submodule of a free module over a polynomial ring (characteristic submodule)
is assigned to a quadric, and, using this submodule, we present another criterion for the exceptionality of a
quadric. We also prove an upper bound for the weights and degrees of fields in the algebra of automorphisms
of a quadric using its codimension.

2. EXCEPTIONALITY CRITERION

Let Mξ be the germ at a point ξ of a smooth real generating submanifold of a complex space CN of
CR-dimension n > 0 and codimension k > 0 (N = n+ k). Let

z = (z1, . . . , zn), w = (w1, . . . , wk), wj = uj + i vj , j = 1, . . . , k,

be the coordinates in CN . Let us assign weights to the variables:

[z] = [z̄] = 1, [w] = [w̄] = [u] = 2.

This enables us to expand power series into weight components. If we assume that the differentiation with
respect to z and z̄ has the weight (−1) and the differentiation with respect to w and w̄ has the weight (−2),
then the Lie algebra of formal vector fields, and together with all its subalgebras, becomes graded. After a
simple quadratic transformation, the equation of Mξ can be represented as

Mξ = {vj =< z, z̄ >j +o(2), j = 1, . . . , k} = {v =< z, z̄ > +o(2)},
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12 BELOSHAPKA

where < z, z̄ >j are Hermitian forms on Cn, and o(m) are the functions whose Taylor expansion at zero
does not contain terms of weight m and lower. The main object of our attention is the tangent quadric

Q = {v =< z, z̄ >}.

Let autMξ be the Lie algebra of germs of the vector fields in CN tangent to Mξ that have the form

X = 2Re

(
f(z, w)

∂

∂z
+ g(z, w)

∂

∂w

)
= (f(z, w), g(z, w)), (2.1)

where f and g are germs of vector functions holomorphic in ξ. These are fields that generate local 1-parameter
groups of holomorphic transformations of Mξ. The model surface Q is weighted homogeneous (given by
weighted homogeneous equations) and holomorphically homogeneous (the group of holomorphic automor-
phisms acts transitively on Q). Therefore, instead of autQξ, we can write autQ (there is no dependence of
the algebra on the point).

According to our grading,
autQ = g−2 + g−1 + g0 + g1 + g2 + . . . .

It can readily be seen that the condition that a vector field X =
∑

Xj belongs to the Lie algebra autQ is
equivalent to the condition that each of its weight components Xj belongs to this algebra. In this situation,
the finite-dimensionality condition for the algebra is equivalent to the condition that the algebra is finitely
graded. In [5] it was proved that the finite-dimensionality criterion for autQ is the following pair of conditions:
(1) the absence of a core, i.e., if < e, z̄ >= 0 for all z, then e = 0; (2) the coordinates of the form < z, z̄ >
are linearly independent (nondegeneracy condition).

Writing out the condition that the field (2.1) belongs to the algebra autQ, we obtain

2Re (i g(z, u+ i < z, z̄ >) + 2 < f(z, u+ i < z, z̄ >), z̄ >) = 0. (2.2)

Write Δ(ϕ(u)) = ∂uϕ(u)(< z, z̄ >). A simple analysis (see [5]) of relation (2.2) enables us to establish the
following assertion.

Proposition 1. A pair (f, g) satisfies the relation (2.2) if and only if

f = a(w) + C(w) z +A(w)(z, z), g = b(w) + 2 i < z, ā(w) > .

(the dependence on z is indicated explicitly, i.e., of degree zero, one, and two, and the dependence on w is
analytic in a neighborhood of the origin), and a,A,C, b satisfy the following relations that decompose into
two systems of equations

< A(u)(z, z), z̄ > = 2 i < z,Δā(u) >, < z,Δ2ā(u) >= 0. (2.3)

Im b(u) = 0, Δ b(u) = 2Re < C(u) z, z̄ >, (2.4)

Im < ΔC(u) z, z̄ > = 0, Δ3 b(u) = 0.

We can write

C(u) z =
∑

Cj(u) zj, A(u)(z, z) =
∑

Akj(u) zk zj , Akj = Ajk.

Then either of the systems of equations can be written as a system of linear equations with constant coef-
ficients. The first system is for the set of vector functions (a(u), Akj(u)), and the other for (b(u), Cj(u)). It
can readily be proved that, if the Hermitian vector form is nondegenerate, then neither of these systems has
any exponential solutions with nonzero exponent. Applying, the Ehrenpreis–Palamodov exponential repre-
sentation theorem [11], to each of these systems, we conclude that the space of solutions of each of them is a
finite-dimensional subspace of the space of polynomials in u. It is clear that the finite-dimensionality implies
a uniform estimate for the degree of the solutions.

It should be noted that any vector field X can be decomposed into a sum of an even, X0, and odd, X1,
components, where

X0 = X−2 +X0 +X2 + . . . , X1 = X−1 +X1 +X3 + . . .

in our grading. At the same time, it can be noted that, if X ∈ autQ, then

X0 = (C(w) z, b(w)), X1 = (a(w) +A(w)(z, z), 2 i < z, ā(w) >).
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ON EXCEPTIONAL QUADRICS 13

Thus the solution (2.3) is exactly the even component X0, and the solution (2.4) is the odd component X1.
Note that the fields of even weight form a subalgebra in autQ.

As is well known, the subalgebra g− = g−2 + g−1 is Tanaka fundamental ([6, 7]) for any nondegenerate
quadric. Therefore, if the corresponding component gj vanishes for some j, then gJ = 0 for all J > j. In this
connection, we give a definition.

Definition 2. A nondegenerate CR-quadric Q is said to be exceptional if g3 �= 0 for Q.

It is clear that a quadric is not exceptional if and only if

autQ = g−2 + g−1 + g0 + g1 + g2.

Meylan’s and Gregorovič’s examples are examples of exceptional quadrics.
The condition of the absence of weight components greater than two is four conditions on (a,A, b, C):

degu a � 1, degu A = 0, degu C � 1, degu b � 2.

These conditions ensure that the even component terminates at the second weight and the odd on the first
weight. However, since the criterion of exceptionality is a condition on the third component, it follows that
we can confine ourselves to considering the first system (2.3) only. Note also that the first relation in (2.3),
for a chosen a, is uniquely solvable with respect to A (nondegeneracy condition). Therefore, the parameter
A can be excluded.

Denote by z · ζ̄ the standard Hermitian form

(z · ζ̄) = z1ζ̄1 + · · ·+ znζ̄n.

Then an arbitrary Hermitian form can be written as (Hz · z̄), where H is a Hermitian matrix, and z is
understood as a column. Denote by Hjz · ζ̄ the j-th coordinate of the vector form < z, z̄ >.

Let B(z̄) = (B1 · z̄, . . . , Bk · z̄) be a family of k linear forms. Consider the equation

< x, z̄ >= B(z̄), x ∈ Cn, B(z̄) = (B1, . . . , Bk) ∈ Ckn, (2.5)

i.e., assume that for a chosen right-hand side, we are looking for a vector x ∈ Cn such that the equation
becomes an identity with respect to z. Such an equation can be written in the form Hjx = Bj , j = 1, . . . , k.
Now consider the mapping

ν : Cn → Ckn, ν(z) = (H1z, . . . , Hkz).

Denote its image by L ′, and denote by L ′′ the direct complement of the image to the entire space. Let π be
the projection of Ckn onto L ′′ along L ′. Since the forms (H1, . . . , Hk) have no common kernel, it follows
that ν is an isomorphism of Cn and L ′, and the inverse mapping ν−1 is defined on L ′. The reasoning of
this paragraph can be summarized as follows.

Lemma 3. (a) Equation (2.5) is solvable with respect to x if and only if π(B) = 0.
(b) If π(B) = 0, then the unique solution of (2.5) has the form x = ν−1(B).

Applying Lemma 3 to the first relation (2.3), we obtain the following assertion.

Lemma 4. (a) The equation < A(u)(z, z), z̄ >= 2 i < z,Δā(u) > is equivalent to the pair of relations

π(< z,Δā(u) >) = 0, A(z, z) = 2 i ν−1(< z,Δā(u) >). (2.6)

(b) If degu a = d, then degu A � d− 1.

Before stating the resulting theorem, we give a definition. A nondegenerate quadric is said to be rigid if
g+ = 0 (gj = 0 if j � 1). Due to the fundamentality of the algebra, this is equivalent to the condition g1 = 0.
In turn, this is equivalent to the fact that the equation π(< z,Δā(u) >) = 0 has no nonzero solutions linear
in u.

A quadric can be treated as a point of the space of families of k Hermitian forms of an n-dimensional
variable. These families form a real linear space H of dimension k n2. Denote the set of nondegenerate
quadrics by H ′. It is clear that the degenerate quadrics form an algebraic subset H (given by polynomial
conditions on the coordinates). Thus, H ′, which is the complement of H , is semi-algebraic (given by
polynomial equalities and polynomial inequalities). Denote by Hl the set of nondegenerate quadrics for
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14 BELOSHAPKA

which g+ is of length at least l (gl �= 0). It is clear that the nonrigid quadrics form H1, and the exceptional
quadrics form H3. It immediately follows from our description of the components of the algebra that Hl is
a semi-algebraic set for all l,

H ′ ⊇ H1 ⊇ H2 ⊇ H3 ⊇ . . .

Let us present two criteria: for the exceptionality and nonrigidity.

Theorem 5. A nondegenerate quadric Q
(a) is exceptional if and only if there is a nonzero quadratic vector form a(u, u) = (a1(u, u), . . . , an(u, u))
satisfying two relations

π(< z,Δā(u, u) >) = 0, < z,Δ2ā(u, u) >= 0.

(b) is nonrigid if and only if there is a nonzero linear vector form a(u) = (a1(u), . . . , an(u)) satisfying the
relation

π(< z,Δā(u) >) = 0.

3. CR-QUADRICS OF THE TYPES (3, 3) AND (3, 4)

Let us state two conditions that can be satisfied by a Hermitian vector form < z, z̄ > of a quadric Q.
(I) The set {z ∈ Cn : rank(H1z, . . . , Hkz) = n} is nonempty (and hence open and dense).
(II) The image of the mapping from C2n to Ck given by (p, q) →< p, q > contains interior points.

Theorem 6. If a nondegenerate quadric satisfies conditions (I) and (II), then it is not exceptional.

Proof. We have < z,Δ2ā >= 0. It follows from condition (I) that Δ2a = d2a(< z, z̄ >,< z, z̄ >) = 0.
Let us complexify the resulting equality (i.e., let z and ζ = z̄ be independent variables). It now follows from
condition (II) that, in a neighborhood of some value z, the differentials du =< z, z̄ > can be treated as
independent ones. This means that d2a = 0, and hence degu a � 1. This completes the proof of the theorem.
Note that the proof of the assertion is based on the second relation of the criterion only and does not use

the first one.
Choose an n > 0. By the condition of linear independence of the coordinate Hermitian forms, nonde-

generate quadrics of codimension k are possible only in the interval 1 � k � n2. Moreover, in the interval
2 � k � n2 − 2, for a generic quadric, we have g+ = 0 (no fields of positive weight). A criterion for this
“rigidity” is the condition g1 = 0. N. Palinchak [8] classified all quadrics for n = k = 3 with g1 �= 0 up to
holomorphic equivalence. This is a set of eight quadrics. A similar list with nine quadrics for n = 3, k = 4 was
compiled by E. Anisova [9]. By the fundamentality, it follows from the fact that g1 = 0 that the subsequent
components also vanish. Therefore, the exceptional quadrics of these types, if they exist, should be included
in the Palinchak and Anisova lists.

Theorem 7. (a) There are no exceptional quadrics of type (3, 3).
(b) There are no exceptional quadrics of type (n, 4) for n � 3.

Proof. We directly verify that all quadrics in both lists satisfy condition (II). As for condition (I), it is
satisfied by all quadrics of the Anisova list and by all quadrics of the Palinchak list with one exception. This
is a quadric which was denoted there by Q5. The forms that define it are

2Rez1 z̄3, 2Rez2 z̄3, 2 Imz1 z̄2.

The space B⊥ = {z ∈ C3 :< z, B̄ >= 0} is defined by two independent relations

z2 B̄3 + z3 B̄2 = z1 B̄2 − z2 B̄1 = 0.

Therefore, the solution has the form

B⊥ = {z1 = λ B̄1, z2 = λ B̄2, z3 = −λ B̄3}.
Thus, if a(u) = (a1(u), a2(u), a3(u)) satisfies the relation < Δ2a, z̄ >= 0, then Δ2aj(u) is divisible by z̄j .
Therefore, the restriction Δ2a1 to the plane z̄1 = 0 is zero. Here the restrictions of the coordinate Hermitian
forms are (z1 z̄3, z2 z̄3 + z3 z̄2,−i z1 z̄2). If we consider the corresponding mapping of C5 onto C3, then we
see that it is of rank three. This enables us to claim that d2a1 = 0, and the degree of a1 does not exceed
one. A similar reasoning gives the same bound for the degree for a2 and a3. Thus, for all quadrics except
for Q5 in the list of Palinchak, the nonexceptionality follows from Theorem 6, and for this quadric Q5 it
follows from our considerations. This proves part (a) and the absence of exceptional quadrics of type (3,4).
A quadric of type (1,4) cannot be nondegenerate. There is only one nondegenerate quadric of type (2,4).
This is the last quadric given by the basis of the space of Hermitian forms on C2. It is easy to check that it
is not exceptional (see also Proposition 20). This proves (b). This completes the proof of the theorem.
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4. QUADRICS OF SMALL CODIMENSIONS

The minimal codimension for which an example of an exceptional quadric is known is k = 4. For the
codimensions k equal to one and two, the situation is as follows. The fact that there are no exceptional
quadrics in codimension one directly follows from [4], and in [1] a proof for k = 2 was given.

In this paper, we prove that there are no exceptional quadrics in the codimension k = 3 either. Thus, the
codimension four is the minimal codimension in which the existence of exceptional quadrics is possible.

Let f =
∑∞

0 fj , g =
∑∞

0 gj be expansions of f and g into sums of the weight components. Then Xm,
i.e., the m-th weight field component (2.1), has the form

Xm = 2Re

(
fm+1(z, w)

∂

∂z
+ gm+2(z, w)

∂

∂w

)
, where

2Re (i gm+2(z, u+ i < z, z̄ >) + 2 < fm+1(z, u+ i < z, z̄ >), z̄ >) = 0. (4.1)

Let us consider the lowest components of the algebra, assuming that Q is nondegenerate. Here we write
the components f and g that arise in this way as multilinear forms, and we shall also assume that they are
symmetric inside every group of variables, z or w. Here are the results.
Weight (–2). f−1 = 0, g0 = q, X−2 = (0, q). We see from the condition (4.1) that q ∈ Rk.
Weight (–1). f0 = p, g1 = l(z), where p ∈ Cn and l(z) is a linear form. We see from the condition (4.1)
that l(z) = 2 i < z, p̄ >. Thus, X−1 = (p, 2 i < z, p̄ >).
Weight 0. f1 = C z, g2 = α(z, z) + ρw. We see from the condition (4.1) that α(z, z) = 0, Im (ρ u) =
0, 2Re < C z, z̄ >= ρ < z, z̄ >. Thus, X0 = (Cz, ρw) with the conditions found above.
Weight 1. f2 = aw +A(z, z), g3 = α(z, z, z) + β(z)w. We see from conditions (4.1) that

α(z, z, z) = 0, < A(z, z), z̄ >= 2 i < z, ā < z, z̄ >>, β(z)u = 2 i < z, ā u > .

We obtain X1 = (aw +A(z, z), 2 i < z, ā w >).
Weight 2. f3 = B(w)z+ b(z, z, z), g4 = α(z, z, z, z)+β(z, z)w+ r(w,w). We see from condition (4.1) that
α(z, z, z, z) = 0, β(z, z)u = 0, b(z, z, z) = 0 , and also

Re < B(u)z, z̄ >= r(< z, z̄ >, u), Im < B(< z, z̄ >)z, z̄ >= 0.

We obtain X2 = (B(w) z, r(w,w)) with the conditions found above.
Weight 3. f4 = d(w,w) +D(w)(z, z) + e(z, z, z, z), g5 = α(z, z, z, z, z) + β(z, z, z)w + γ(z)(w,w). We see
from condition (4.1) that α(z, z, z, z, z) = 0, β(z, z, z)(u) = 0, e(z, z, z, z) = 0 , and also

γ(z)(u, u) = 2 i < z, d̄(u, u) >,

< D(u)(z, z), z̄ > = 4 i < z, d̄(< z, z̄ >, u) >, < D(< z, z̄ >)(z, z), z̄ >= 0.

We obtain X3 = (d(w,w) +D(w)(z, z), 2 i < z, d̄(w,w) >) with the conditions found above.

Thus, we have the following assertion.

Proposition 8. (a) If Q is a nondegenerate quadric, then the lower weight components of autQ are of
the form

X−2 = (0, q), q ∈ Rk,

X−1 = (p, 2 i < z, p̄ >), p ∈ Cn,

X0 = (Cz, ρw), C ∈ gl(n,C), ρ ∈ gl(k,R), 2Re < C z, z̄ >= ρ < z, z̄ >,

X1 = (aw +A(z, z), 2 i < z, ā w >), < A(z, z), z̄ >= 2 i < z, ā < z, z̄ >>,

X2 = (B(w) z, r(w,w)), Re < B(u)z, z̄ >= r(< z, z̄ >, u), Im < B(< z, z̄ >)z, z̄ >= 0,

X3 = (d(w,w) +D(w)(z, z), 2 i < z, d̄(w,w) >),

< D(u)(z, z), z̄ >= 4 i < z, d̄(< z, z̄ >, u) >, < D(< z, z̄ >)(z, z), z̄ >= 0. (4.2)

(b) Q is not exceptional if and only if the only solution to (4.2) is D(u)(z, z) = 0 and d(u, u) = 0.
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Lemma 9. (a) If Q is a nondegenerate quadric, then

D(< z, p̄ >)(z, z) = 0.

(b) Q is not exceptional if and only if the only solution to

< D(< z, p̄ >)(z, z), z̄ >= 0, < D(u)(z, z), z̄ >= 4 i < z, d̄(< z, z̄ >, u) > (4.3)

is D(u)(z, z) = 0 and d(u, u) = 0.

Proof. Let us prove (a). Evaluating the commutator directly, we obtain [X3, X−1] = (F (z, w), G(z, w)),
where

F = −2 d(2i < z, p̄ >,w)−D(2i < z, p̄ >)(z, z)− 2D(w)(z, p),

G = (2 i < d(w,w) +D(w)(z, z), p̄ > −2 i < p, d̄(w,w) > −4 i < z, d̄(2i < z, p̄ >,w) >).

The commutator of a field of weight 3 with a field of weight (-1) is an element of g2. We know that the
z-coordinate of such a field does not contain any cubic form in z and, therefore, D(< z, p̄ >)(z, z) = 0. This
immediately implies (b). This completes the proof of the lemma.

LetD(u)(z, z) = D1(z, z)u1+· · ·+Dk(z, z)uk, whereDj(z, z) = (D1
j (z, z), . . . , D

n
j (z, z)) is a vector-valued

quadratic form. Then the first relation (4.3) becomes

(H1z · p̄)D1(z, z) + · · ·+ (Hkz · p̄)Dk(z, z) = 0. (4.4)

Here the ν-th coordinate (4.4) looks as follows:

(H1z · p̄)Dν
1 (z, z) + · · ·+ (Hkz · p̄)Dν

k(z, z) = 0. (4.5)

Removing the convolution with the independent parameter p̄, we obtain the vector relation of the form

Dν
1 (z, z)H1z + · · ·+Dν

k(z, z)Hkz = 0. (4.6)

To a quadratic vector form d(u, u), there uniquely corresponds a symmetric bilinear vector form

d(u, U) =
∑
αβ

dαβ uα Uβ =
∑
β

δβ(u)Uβ, δβ(u) =
∑
α

dαβ uα, dαβ ∈ Cn.

If D(u)(z, z) = 0, then the condition on the form d(u, u) can be written out as follows:

< z, δ̄j(< z, z̄ >) >= 0, j = 1, . . . , k.

Since all coefficients of the forms d satisfy the same relation, we write this relation in a form which is free
from indices:

< z, δ̄(< z, z̄ >) >= 0, δ(u) = u1 α1 + · · ·+ uk αk. (4.7)

Thus, to describe g3 under the condition D(z, z) = 0, one must describe all families (δ1(u), . . . , δk(u)) of
linear Cn-valued forms such that each of them satisfies relation (4.7), and the entire collection satisfies the
symmetry condition for the bilinear form d(u, U), namely, dαβ = dβα.

Before proceeding to the case of codimension three, which is of interest for us, let us consider the cases
k = 1 and k = 2 in our context.

Case k=1. If k = 1, then the first relation (4.3) becomes D(< z, p̄ >)(z, z) = 0; whence we immediately
obtain D = 0. After this, the second relation becomes < d(< z, z̄ >, u), z̄ >=< α, z̄ >< z, z̄ > u = 0.
Whence we immediately obtain d = 0 and g3 = 0.

Case k=2. Write

Pz = H1z, Qz = H2z, Pz = (p1(z), ..., pn(z)), Qz = (q1(z), ..., qn(z)).

Then (4.6) becomes

l(z, z)Pz +m(z, z)Qz = 0, l(z, z) = Dν
1 (z, z), m(z, z) = Dν

2 (z, z).
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There is a μ such that pμ(z) = α(z) is not proportional to qμ = β(z). Then we obtain

l(z, z) = λ(z)β(z), m(z, z) = −λ(z)α(z).

If λ(z) �= 0, then we obtain β(z)H1z = α(z)H2 z, which implies that H1z = α(z)A, H2z = β(z)A.
Let us state a lemma needed here and in what follows.
Lemma 10. (a) If a Hermitian matrix H is of rank 1, i.e., Hz = l(z)A (l �= 0, A �= 0), then

l(z) = ρ (z · Ā), ρ �= 0, and the corresponding Hermitian form looks as follows :

(Hz · z̄) = ρ |(z · Ā)|2, ρ ∈ R.

(b) If a Hermitian matrix H is of rank 2, then the corresponding Hermitian form looks as follows :

(Hz · z̄) = ρ |(z · Ā)|2 + τ |(z · B̄)|2.

Proof. The rank of a Hermitian form is invariant under nondegenerate linear changes. Let us bring the
form under consideration to a diagonal form. The number of nonzero coefficients in the first case is equal
to one and in the other to two. Returning to the original coordinates, we obtain both the assertions of the
lemma.

In accordance with the lemma,

(Pz · z̄) = τ1|(z · Ā)|2, (Qz · z̄) = τ2|(z · Ā)|2,

which contradicts the non degeneracy condition and, therefore, we have D = 0.
Let us write out (4.7); we obtain

(Pz · z̄) < z, ᾱ1 > +(Qz · z̄) < z, ᾱ2 >= 0. (4.8)

A pair of vectors (α1, α2) can be of rank zero, one, or two. The rank zero means that δ = 0. Let it be one;
then the vectors are proportional, write α2 = λα1, α1 �= 0. From (4.8), we obtain

((Pz · z̄) + λ̄ (Qz · z̄)) < z, ᾱ1 >= 0.

This implies the linear dependence of P and Q, which contradicts the nondegeneracy condition for the pair
(P,Q).

Now let (α1, α2) be linearly independent (n � 2). Let us choose a basis in Cn of the form (α1, α2, . . . ).
Let pj(z) be the j-th coordinate of Pz in this basis, and let qj(z) be the j-th coordinate of Qz. Then (4.8)
becomes

p1(z)Pz + p2(z)Qz = 0, q1(z)Pz + q2(z)Qz = 0. (4.9)

Write out the first coordinate of the first equality and the second coordinate of the other. We have

(p1(z))
2 + p2(z) q1(z) = 0, (q2(z))

2 + p2(z) q1(z) = 0.

If p1 = 0, then p2 = 0, as follows from the first equality (otherwise q1 = 0, and α1 falls into the common
kernel). Now it follows from the second equality that q2 = 0, and α2 falls into the common kernel. A
contradiction. Thus, p1 and q2 are nonzero; however, then (4.9) and the nondegeneracy imply that p2 and
q1 are nonzero either. Then, applying Lemma 11 (see below) to the first equality in (4.9), we see that only
version (b.2) is possible, i.e., Pz = p2(z)A, Qz = −p1(z)A. According to Lemma 10, the forms (Pz · z̄) and
(Qz · z̄) are proportional to |(z · Ā)|2, which contradicts the nondegeneracy condition.

Thus, for k = 2, we have g3 = 0.
In connection with the study of (4.3) for small k, we formulate several obvious auxiliary assertions.

Lemma 11. Let m(z)P z = l(z)Qz, where P and Q are square matrices and m and l are scalar linear
forms ; then one of the following possibilities must occur.
(a) m(z)P z = l(z)Qz = 0, i.e., every pair has at least one factor which is equal to zero (4 versions).
(b.1) Linear dependence. P z = λQ z �= 0, λ m(z) = l(z) �= 0.
(b.2) Linear independence. P z = l(z)A, Q z = m(z)A, A �= 0, and the forms l and m are not proportional.

Lemma 12. Let m(z)A = l(z)B, where A and B are vectors and m and l are scalar linear forms; then
one of the following possibilities holds.
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(a) m(z)A = l(z)B = 0, i.e., at least one of the factors in every pair is zero (4 versions).
(b) Linear dependence. B = λA �= 0, m(z) = λ l(z) �= 0.

Let I(l1(z), l2(z)) be the ideal in the ring of polynomials in z generated by two the linear forms l1 and l2.

Lemma 13. (a) l(z) ∈ I(l1(z), l2(z)) if and only if l(z) = λ1 l1(z) + λ2 l2(z).
(b) The ideal I(l1(z), l2(z)) is simple, i.e., if p(z) q(z) ∈ I(l1(z), l2(z)), then either p(z) ∈ I(l1(z), l2(z)) or
q(z) ∈ I(l1(z), l2(z)).

Let us pass to the consideration of codimension k = 3.

Let
< z, z̄ >= ((Pz · z̄), (Qz · z̄), (Rz · z̄)).

Relation (4.6) becomes
l(z, z)Pz +m(z, z)Qz + n(z, z)Rz = 0. (4.10)

Lemma 14. Relation (4.10) is impossible for linearly dependent (l,m, n).

Proof. Let rank(l,m, n) = 1, i.e.,

l(z, z) = λϕ(z, z), m(z, z) = μϕ(z, z), n(z, z) = ν ϕ(z, z), ϕ(z, z) �= 0.

Then λPz + μQz + ν Rz = 0. A contradiction.
Let rank(l,m, n) = 2, i.e. (to be definite), n(z, z) = λ l(z, z)+μm(z, z), where l andm are not proportional.

We have
l(z, z)(Pz + λRz) +m(z, z)(Qz + μRz) = 0.

Let l and m be not coprime, i.e.,

l(z, z) = α(z) γ(z), m(z, z) = β(z) γ(z),

where α and β are not proportional, γ �= 0. We obtain

α(z)(Pz + λRz) + β(z)(Qz + μRz) = 0.

This implies (Lemma 11) that

(Pz + λRz) = β(z)A, (Qz + μRz) = −α(z)A, A ∈ Cn.

If λ and μ are real, then the matrices on the left-hand sides of these equalities are Hermitian and, by
Lemma 10, α(z) and β(z) are proportional to (z · Ā). A contradiction.

If at least one of the numbers λ and μ is not real, for example, λ, then, separating the imaginary part in
(Pz · z̄ + λRz · z̄) = β(z)A · z̄, we obtain

(Imλ)Rz · z̄ = Im(β(z)A · z̄).

Whence, by Lemma 10, we see that β(z) is proportional to z · Ā; this implies that all three Hermitian forms
(Pz · z̄, Qz · z̄, Rz · z̄) are proportional to |z · Ā|2. A contradiction.

Let l and m be coprime. Then (Pz+λRz) = (Qz+μRz) = 0. A contradiction. This completes the proof
of the lemma.

Further, we assume that (l(z, z),m(z, z), n(z, z)) are linearly independent. Consider the ideals generated
by pairs of quadratic forms:

I1 = (m,n), I2 = (l, n), I3 = (l,m)

and the sets of their zeros V1, V2, V3. The linear independence of the forms means that

l(z, z) /∈ I1, m(z, z) /∈ I2, n(z, z) /∈ I3. (4.11)

Consider the zero sets of these ideals,

V1 = {m(z, z) = n(z, z) = 0}, V2 = {l(z, z) = n(z, z) = 0}, V3 = {l(z, z) = m(z, z) = 0}.
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Lemma 15. Let the dimension of the space Cn be not less than four, and let l be nonidentically zero on
V1, let m be nonidentically zero on V2, and let n be nonidentically zero on V3. Then the relation (4.10) is
impossible.

Proof. It follows from relation (4.10) that Pz = 0 on the nonempty set

V ′
1 = {z ∈ Cn : m(z, z) = n(z, z) = 0, l(z, z) �= 0}.

Therefore, Pz = 0 on the set V1 as well. By a similar reasoning for Qz and Rz, we see that all three linear
operators vanish on

{z ∈ Cn : m(z, z) = n(z, z) = l(z, z) = 0},
which is of dimension at least (n− 3) and, therefore, contains a nonzero z. A contradiction. This completes
the proof of the lemma.

Consider the situation in which at least one of the three conditions of the previous lemma is violated.
Let, for example, l = 0 on V1. Taking into account that (l,m, n) are linearly independent and l /∈ I1, it
immediately follows that I1 is not radical. This means that, among the linear combinations of m and n,
there is a reducible quadratic form. Together with the condition that l vanishes on V1, this means that, from
the linearly independent forms (l,m, n), we can pass, using a nondegenerate linear transformation, to their
linear combinations of the form

l′(z, z) = λ(z)μ2(z), m
′(z, z) = μ1(z)μ2(z), n

′(z, z) = n(z, z).

Relation (4.10) acquires the form

l′(z, z)P ′z +m′(z, z)Q′z + n′(z, z)R′z = λ(z)μ(z)P ′z + μ1(z)μ2(z)Q
′z + n(z, z)R′z = 0, (4.12)

where (P ′z,Q′z,R′z) are obtained from (Pz,Qz,Rz) by a nondegenerate linear transformation (below we
omit the primes).

Lemma 16. If the dimension of the space Cn is at least 4 and one of three conditions of Lemma 15 is
violated, then (4.10) does not hold.

Proof. Let n(z, z) be divisible by μ2(z), i.e., n(z, z) = μ2(z) ν(z). Then (4.12) becomes

λ(z)Pz + μ1(z)Qz + ν(z)Rz = 0.

Then, just as in the proof of Lemma 15, we show that all three operators vanish on the subspace

λ(z) = μ1(z) = ν(z) = 0

of positive dimension. This means that the original triple has a common kernel of the operators. A contra-
diction.

Let now n(z, z) be non divisible by μ2(z); we have

μ2(z)(λ(z)Pz + μ1(z)Qz) + n(z, z)Rz = 0.

Whence it follows that

Rz = μ2(z)A, (λ(z)Pz + μ1(z)Qz) + n(z, z)A = 0.

Hence we obtain n(z, z) = α(z)λ(z) + β(z)μ1(z). Then we have

λ(z)(Pz + α(z)A) + μ1(z)(Qz + β(z)A) = 0.

This implies in turn that

(Pz + α(z)A) = μ1(z)B, (Qz + β(z)A) = −λ(z)B.

Finally,
Pz = −α(z)A+ μ1(z)B, Qz = −β(z)A− λ(z)B, Rz = μ2(z)A.

That is (Pz,Qz,Rz) lie in the linear span of two constant vectors (A,B). From (Pz,Qz,Rz), using a
nondegenerate linear transformation, one can pass to the original Hermitian matrices that appear in relation
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(4.10). Here the vectors (A,B) correspond to two constant vectors (A′, B′). In this case, as follows from
Lemma 10, all three Hermitian forms are linear combinations of |z · Ā′|2 and |z · B̄′|2, and hence are linearly
dependent. A contradiction.

Applying Lemma 14, Lemma 15, Lemma 16, and Proposition 8, we obtain the following assertion.

Proposition 17. (a) Let k = 3. If D(u)(z, z) satisfies relation (4.4), then D(u)(z, z) = 0.
(b) In this case, g3 consists of fields of the form

X = (d(w,w), 2 i < z, d̄(w,w) >), where < z, d̄(< z, z̄ >, u) >= 0.

For k = 3, the form δ is
δ(u) = α1 u1 + α2 u2 + α3 u3.

Let us write out (4.7); we obtain

(Pz · z̄) < z, ᾱ1 > +(Qz · z̄) < z, ᾱ2 > +(Rz · z̄) < z, ᾱ3 >= 0. (4.13)

The rank of the triple of vectors (α1, α2, α3) can be zero, one, two, or three. The rank zero means that δ = 0.
Case 1 (rank one). Let the rank be equal to one, i.e., αj = λj α, α ∈ Cn \ {0}, (λ1, λ2, λ3) �= 0. It follows

from (4.13) that

(λ̄1 (Pz · z̄) + λ̄2 (Qz · z̄) + λ̄3 (Rz · z̄)) < z, ᾱ >= 0.

This implies the linear dependence of (P,Q,R), which contradicts the nondegeneracy condition for this set.
Case 2 (rank two). Let the rank be equal to two. We may assume that α3 = λ̄ α1+ μ̄ α2, where the vectors

α1, α2 are linearly independent. It follows from (4.13) that

((Pz · z̄) + λ (Rz · z̄)) < z, ᾱ1 > +((Qz · z̄) + μ (Rz · z̄)) < z, ᾱ2 >= 0.

In Cn, choose a basis of the form (α1, α2, . . . ). Writing out relation (4.13), we obtain

p1(z) ((Pz · z̄) + λ (Rz · z̄)) + p2(z) ((Qz · z̄) + μ (Rz · z̄)) = 0,

q1(z) ((Pz · z̄) + λ (Rz · z̄)) + q2(z) ((Qz · z̄) + μ (Rz · z̄)) = 0,

r1(z) ((Pz · z̄) + λ (Rz · z̄)) + r2(z) ((Qz · z̄) + μ (Rz · z̄)) = 0. (4.14)

It follows from the condition that (P,Q,R) is nondegenerate that, in every pair of the form
(p1, p2), (q1, q2), (r1, r2), either both forms are equal to zero or are not proportional. Let r1 = r2 = 0. Then,
writing out the first coordinate of the first relation and the second of the other and applying Lemma 5, we
see that p1 is proportional to p2 and q1 is proportional to q2. Thus, all these forms are equal to zero, which
means that both vectors α1 and α2 are contained in the kernel of < z, z̄ >. This contradiction means that
(r1, r2) are not proportional. Then, taking into account Lemma 11 and the nondegeneracy condition, from
the third relation (4.14) we obtain

P z + λR z = r2(z)A, Q z + μRz = −r1(z)A, A �= 0. (4.15)

Substituting (4.15) into the first and second relations (4.14) and taking into account the fact that A �= 0, we
can write

p1(z) r2(z)− p2(z) r1(z) = 0, q1(z) r2(z)− q2(z) r1(z) = 0.

Taking into account the fact that r1 and r2 are not proportional, we see that

p1(z) = ν r1(z), p2(z) = ν r2(z), q1(z) = κ r1(z), q2(z) = κ r2(z).

Writing out the first and second coordinates of (4.15), we obtain

ν r1(z) + λ r1(z) = a1 r2(z), ν r2(z) + λ r2(z) = a2 r2(z),

κ r1(z) + μ r1(z) = −a1 r1(z), κ r2(z) + μ r2(z) = −a2 r1(z).

This implies
ν = −λ, κ = −μ, a1 = a2 = 0.
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Let us represent (4.15) in the form

(Pz · z̄) + λ (Rz · z̄) = r2(z) (A · z̄), (Qz · z̄) + μ (Rz · z̄) = −r1(z) (A · z̄). (4.16)

If the coefficients λ and μ are real, then Lemma 10 implies that both forms r1 and r2 are proportional to
(z · Ā). A contradiction. Further, let only one of them be real, say, μ, while L = Imλ �= 0. Then the second
relation (4.16) implies that r1(z) = τ (z · Ā). Separating the imaginary part of the first relation (4.16) we see
that

(Rz · z̄) = 1

L
Im (r2(z) (A · z̄)).

This is equivalent to the relation

rj(z) =
1

2 i L
(r2(z) aj − (z · Ā) r̄j2).

For j = 2 we obtain

r2(z) =
r̄22
2 i L

(z · Ā).

Whence it follows that r1 and r2 are proportional. A contradiction.
Now let L = Imλ �= 0 and M = Imμ �= 0. Separating the imaginary parts of the first and second relations

(4.16), we obtain

(Rz · z̄) = 1

L
Im (r2(z) (A · z̄)) = − 1

M
Im (r1(z) (A · z̄)).

This implies that
(z̄ · A) (L r1(z) +M r2(z)) = (z · Ā) (L r1(z) +M r2(z)),

which in turn implies

r2(z) = − L

M
r1(z) + ν (z · Ā).

Now, separating the real parts of relations (4.16) and substituting the values for (Rz · z̄) and r2(z) obtained
above into these parts, we obtain expressions for (Pz · z̄) and (Qz · z̄). As a result, we see that all three
Hermitian forms are proportional to Im (r1(z) (A · z̄)). A contradiction.

Case 3 (rank three). Assume that n � 3. As is well known, there is no counterexample of CR-dimension
n � 2. Choose a basis in Cn of the form (α1, α2, α3, . . . ). Relation (4.13) becomes

p1(z) (Pz · z̄) + p2(z) (Qz · z̄) + p3(z) (Rz · z̄) = 0,

q1(z) (Pz · z̄) + q2(z) (Qz · z̄) + q3(z) (Rz · z̄) = 0,

r1(z) (Pz · z̄) + r2(z) (Qz · z̄) + r3(z) (Rz · z̄) = 0. (4.17)

Or, in the vector form,

p1(z)Pz + p2(z)Qz + p3(z)Rz = 0,

q1(z)Pz + q2(z)Qz + q3(z)Rz = 0,

r1(z)Pz + r2(z)Qz + r3(z)Rz = 0. (4.18)

Let us write the first coordinate of the first relation (4.18), the second coordinate of the second relation, and
the third coordinate of the third relation. We obtain

p21 + p2 q1 + p3 r1 = 0,

q1 p2 + q22 + q3 r2 = 0,

r1 p3 + r2 q3 + r23 = 0.

Whence, using Lemma 13, we have

p1(z) = α2 p2(z) + α3 p3(z),

q2(z) = β1 q1(z) + β3 q3(z),

r3(z) = γ1 r1(z) + γ2 r2(z).
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Then (4.18) becomes

p2(z) (Q+ α2 P ) z + p3(z) (R+ α3 P ) z = 0,

q1(z) (P + β1 Q) z + q3(z) (R+ β3 Q) z = 0,

r1(z) (P + γ1 R) z + r2(z) (Q+ γ2 R) z = 0. (4.19)

It follows from the linear independence of (P,Q,R) that in every pair

(p2, p3), (q1, q3), (r1, r2)

either both the forms vanish simultaneously or they are nonproportional.
Case 3.0. All three pairs cannot be zero, because it would mean that all the first three basis vectors fall

into a common kernel. Thus, one of the three pairs is nonzero and nonproportional. Let it be (r1, r2).
Case 3.1. Let both remaining pairs be zero. Write out the first coordinate of the third relation in (4.19); we

obtain γ1 r
2
1+γ2 r1 r2 = 0. Whence it follows that γ1 = γ2 = 0. Then, using Lemma 3 and the nondegeneracy,

we obtain P z = r2(z)A, Q z = −r1(z)A, A �= 0 and, from Lemma 6, that both r1 and r2 are proportional
to (z · Ā). A contradiction.

Case 3.2. Let only one pair vanish, say, p1 = p2 = 0, and the forms (q1, q3), as well as (r1, r2), be
pairwise nonproportional. Let us write out the first coordinate of the second relation (4.19); we obtain
β1 q

2
1+q3 r1+β3 q3 q1 = 0. Whence it immediately follows that r1 = ν q1. Let us write out the first coordinate

of the third relation (4.19); we obtain γ1 r
2
1 + r2 (q1 + γ2 r1) = 0. Whence, since r2 is not proportional to r1,

it follows that γ1 = 0, γ2 = −1/ν, i.e., r3 = −r2/ν. The relation r1(z)P z + r2(z) (R −Q/ν) z = 0 implies
that rj = qj/ν. Whence we see that R = Q/ν. A contradiction.

Case 3.3. Let all three pairs be pairwise nonproportionate. Then, from (4.19), Lemma 11, and the non-
degeneracy, we obtain

(Q+ α2 P ) z = −p3(z)A, (R+ α3 P ) z = p2(z)A,

(P + β1 Q) z = −q3(z)B, (R+ β3 Q) z = q1(z)B,

(P + γ1 R) z = −r2(z)C, (Q+ γ2 R) z = r1(z)C, (4.20)

where A,B,C are three nonzero vectors. Writing out the third coordinate for the first equality, the second
coordinate for the second equality, the third coordinate for the third equality, the first coordinate for the
fourth equality, the second coordinate for the fifth equality, and the first coordinate for the sixth equality,
we obtain the following family of relations:

q3(z) = −(α2 + a3) p3(z), (α2 + a3)(β1 + b3) = 1, (4.21)

r2(z) = (a2 − α3) p2(z), (α3 − a2)(γ1 + c2) = 1,

r1(z) = (b1 − β3) q1(z), (b1 − β3)(c1 − γ2) = 1.

Thus, all nine linear forms (p1, p2, p3, q1, q2, q3, r1, r2, r3) are linear combinations of three of them,
(q1, p2, p3):

p1 = α2 p2 + α3 p3, q2 = β1 q1 − β3 (a3 + α2)p3, q3 = −(α2 + a3) p3,

r1 = (b1 − β3) q1, r2 = (a2 − α3) p2, r3 = γ1 (b1 − β3) q1 + γ2 (a2 − α3) p2.

We also see that

β1 =
1

α2 + a3
− b3, γ1 =

1

α3 − a2
− c2, γ2 =

1

β3 − b1
+ c1,

where the denominators do not vanish.
In this case, all eighteen relations obtained from the first three coordinates (4.20) are a system

L(q1, p2, p3) = 0 of linear relations among (q1, p2, p3). The coefficients of this system rationally depend
on (a1, a2, a3, b1, b2, b3, c1, c2, c3) and (α2, α3, β3), and the denominators do not vanish by (4.21).

Let us number these equations successively, i.e., the first coordinate of the first group, the second coordi-
nate of the first group, the third coordinate of the first group, the first coordinate of the second group, and
so on until the third coordinate of the sixth group. We obtain

l1j q1 + l2j p2 + l3j p3 = 0, j = 1, . . . , 18.
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Taking into account that the rank of the pair of forms (p2, p3) is equal to two, we see that the rank of the
resulting matrix of coefficients of size 3× 18 is equal to one. We obtain a system of 34 equations

e2j−3 = l2j l
1
1 − l1j l

2
1, e2j−2 = l3j l

1
1 − l1j l

3
1, j = 2, . . . , 18.

Let Em be the numerator of the expression em. We obtain a system of 34 polynomial relations for 12 variables:
Em = 0, m = 1, . . . , 34. We have used above a part of the relations (4.20). We immediately see that

E3 = E4 = E7 = E8 = E15 = E17 = E18 = E26 = 0.

Denote the system of the remaining 26 equations by

L (a1, a2, a3, b1, b2, b3, c1, c2, c3, α2, α3, β3) = 0. (4.22)

Lemma 18. (a) The solutions of system (4.22) form the union of three irreducible components

a1 = a2 = a3 = α2 = α3 = 0,

a1 = a2 = a3 = b1 = b2 = b3 = α3 = 0,

a1 = a2 = a3 = b1 = b2 = b3 = c1 = c2 = c3 = α2 β3 + α3 = 0.

(b) None of these solutions is compatible with the condition of Case (3.3).

Proof. Part (a) is verified by a direct analysis of the system, which is simplified due to the fact that the
equations a3 = a2 and (c2 − c1)(a2 −α3) = 0 are part of the system. Since (4.21) implies that (a2 −α3) �= 0,
it follows that c2 = c1. Part (a) is also easily verified with using the Maple system.

Further, if a solution belongs to the first or second component, then α3−a2 = 0, which contradicts (4.21).
Let a solution belong to the third component. Then

β1 =
1

α2
, β3 = −α3

α2
, γ1 =

1

α3
, γ2 = −α2

α3
.

Here the dependent forms are expressed in terms of (q1, p2, p3) as follows:

q2 = −α2 p2, q3 = −α2 p3, r1 = −α2 α3 p2 − α2
3 p3, r2 = −α3 p2, r3 = −α3 p3.

Let us use the first two equalities in (4.20) to express Q and R

Qz = −α2 P z − p3(z)A, R z = −α3 P z + p2(z)A. (4.23)

Substituting the result into the four remaining equalities; we obtain

B = − 1

α2
A, q1 = −α2

2 p2 − α2 α3 p3, C =
1

α2
3

A,
α2

α3
p2 = 0.

The last equality cannot be satisfied, because α2 �= 0. This contradiction completes our discussion.

Theorem 19. If Q is a nondegenerate model quadric of codimension k = 3, then the decomposition autQ
into the weight components has the form

g−2 + g−1 + g0 + g1 + g2.

Proof. As is well known, for every nondegenerate quadric, the subalgebra g− = g−2 + g−1 is Tanaka
fundamental ([6, 7]). We have shown above that g3 = 0. Whence the triviality of all components with greater
weights immediately follows. This completes the proof of the theorem.

The above proofs of nonexceptionality of the quadrics of small codimension use the second relation (2.3)
only. To quadrics of small codimensions, the quadrics of very high codimensions are opposed, in a sense.
The largest codimension for a fixed n is k = n2. This is the only quadric given by the basis set in the space
Hermitian forms. Introduce the following notation for the variables of the group w:

wαα = uαα + i vαα, 1 � α � n.

wR
αβ = uR

αβ + i vRαβ , wI
αβ = uI

αβ + i vIαβ , 1 � β < α � n.
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Then the equations of this quadric become

vαα = zα z̄α, 1 � α � n.

vRαβ = 2Re zα z̄β, vIαβ = 2 Im zα z̄β, 1 � β < α � n.

Proposition 20. If Q is a nondegenerate quadric of codimension k = n2 (the last quadric), then g3 = 0.
In other words, such a quadric is not exceptional.

Proof. We select some coordinates in the first vector relation (2.3). Let us write out the (αα)-coordinate,

Aα(u)(z, z) z̄α = 2 i zαΔāα(u).

The divisibility by z̄α implies that aα depends only on uαα, and Aα(u)(z, z) = 2 i z2α ā
′
α(uαα). Writing out

the (α1)R-coordinate (2.3) for α > 1, we obtain

ā′α(uαα) z
2
α z̄1 − ā′1(u11) z

2
1 z̄α = zα ā′1|z1|2 + z1 ā

′
α |zα|2.

This gives a = const, A = 0. Whence it immediately follows that g1 = 0, and, due to fundamentality, g+ = 0
as well. This completes the proof of the proposition.

Note that here, in contrast to small codimensions, we have used the first relation (2.3) only, and a small
part of it, and not used the other relation (2.3) at all.

5. RAQ-QUADRICS

In [10], a very interesting class of quadrics such that n = k was considered (the codimension is equal to
the CR-dimension), the so-called RAQ-quadrics. These quadrics are in one-to-one correspondence with the
finite-dimensional real commutative (associative) algebras with identity.

Let A be such an algebra of dimension n. If X and Y are elements of A , then by X · Y we denote their
product as elements of algebra. Let A c = A

⊗
C be the complexification of A . If Z ∈ A c, then by Z̄ we

denote the complex conjugation canonically defined in A c. The quadric corresponding to the algebra A has
the form

Q = {(Z,W ) ∈ (A c)2 : ImW = Z · Z̄}. (5.1)

If we ask a following question: When does a quadric of type (n, n) have this form? The answer is given
by two conditions on < z, z̄ >:
– real property: in some coordinates, the forms on real vectors takes real values,
– associativity << p, q >, r >=< p,< q, r >> for all p, q, r ∈ Rn.
That is why they are called RAQ-quadrics – Real Associative Quadrics.

In [10], it was shown that the nondegeneracy condition for an RAQ-quadric is equivalent to the presence
of unit in A .

Theorem 21. There are no exceptional RAQ-quadrics.

Proof. To prove this, we use the sufficient nonexceptionality condition of Theorem 6. Let us verify the
validity of conditions (I) and (II).

Condition (I). Let (E1, . . . , En) be the basic elements of the algebra A , where E1 is the unit of the algebra.
Then the coordinate operators have the form Hj Z = Ej ·Z ,and thus Hj E1 = Ej , and the set (E1, . . . , En)
has rank n.

Condition (II). The image of the mapping (Z ′, Z) →< Z ′, Z̄ >= Z ′ ·Z̄ coincides with A c, because (Z ′, E1)
goes to Z ′. This completes the proof of the theorem.

Corollary 22. If Q is a nondegenerate RAQ-quadric, then
(a) autQ = g−2 + g−1 + g0 + g1 + g2.
(b) The subgroup G+, the subgroup of nonlinear automorphisms Q preserving the origin, is described by the
Poincaré formula (see [10]), namely,

Z∗ = (Z + a ·W ) · (1− 2 i ā · Z − (r + i a · ā) ·W )−1,

W ∗ = W · (1− 2 i ā · Z − (r + i a · ā) ·W )−1, (5.2)

where a ∈ A c, r ∈ A .
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6. A BOUND FOR THE LENGTH OF THE SUBALGEBRA g+

In [12], a theorem (Theorem 12.3.11) is given that enables one to estimate the number of a jet j on which
the mapping of an analytic l-nondegenerate germ of codimension k (with the minimality condition) depends,
namely, j � (k + 1) l. Since a nodegenerate quadric Q is 1-nondegenerate and has finite type at every point
(in particular, it is minimal), it follows that, for the degree d of the coefficients of fields in autQ, we obtain
the following bound:

d � (k + 1).

In this part of the paper, we obtain this bound and other similar results, using methods different from those
used in [12] (Segre sets). Namely, we use the technique of the Fourier transform in the space of distributions
(generalized functions), which underlies the proof of the Ehrenpreis–Palamodov theorem [11]. This theorem
was used in [5] to obtain a criterion for the finite-dimensionality of the algebra of a quadric Q.

The Ehrenpreis–Palamodov theorem is a very general result which gives a description of the kernel of
an arbitrary linear differential operator with constant coefficients (a system of equations). The number q of
unknown functions, the number p of independent variables they depend on, and also the maximal order r of
differential relations are arbitrary. By a solution of such a system in the present context one means a vector
of distributions that satisfies all the relations included in the system of equations.

By the characteristic set for such a system one means an algebraic subset χ of the space of independent
variables Cp, which is formed by the exponents λ ∈ Cp for which there exists a nonzero vector v ∈ Cq such
that

v exp(λ1 x1 + · · ·+ λp xp)

is a solution to the system. The theorem states that every generalized solution of the system can be written
in the form ∫

(P(x) exp(λ1 x1 + · · ·+ λp xp)) dμ(λ),

where μ(λ) is a charge supported by χ and P(x) is a polynomial vector.
Let F (s) = (F1(s), . . . , Fn(s)) be a vector distribution which is the Fourier transform of the vector function

a(u) = (a1(u), . . . , an(u)). Then, applying the Fourier transform to the second equation (2.3), we see that
the following relation holds for every z ∈ Cn:

(s1 < z, z̄ >1 + · · ·+ sk < z, z̄ >k)
2 < F (s), z̄ >= 0. (6.1)

Let C[s] = C[s1, . . . , sk] be the polynomial ring in the k-dimensional variable s with complex coefficients,
and let C[u] = C[u1, . . . , uk] be the same polynomial ring in the k-dimensional variable u. Let (C[s])k be a
free module of dimension k over C[s], and let (C[u])n be a free module of dimension n over C[u]. Let

{ej = (0, . . . , 0, 1 (at the jth place), 0, . . . , 0), j = 1, . . . , k}

be the set of generators of the module (C[s])k.
Introduce the module M = M(Q), the submodule of the module (C[s])k generated by all elements of the

form
(s1 < z, z̄ >1 + · · ·+ sk < z, z̄ >k)

2 (< ϕ(s), z̄ >1 e1 + · · ·+ < ϕ(s), z̄ >k ek), (6.2)

where z ∈ Cn, ϕ(s) = (ϕ1(s), . . . , ϕn(s)) ∈ (C[s])n. We call M(Q) the characteristic submodule of the
quadric Q.

Let us present a set of assertions which, under the condition that the quadric Q is nondegenerate, follow
for the equation

Δ2 < a(u), z̄ > = 0 (6.3)

directly from the general scheme [11] (see also [13], Chap. 10).
(a) The space of solutions of (6.3) is a linear subspace L1 of the space of polynomials of degree not

exceeding some degree dmax.
(b) The space of solutions of (6.1) is a linear subspace L2 of the space of distributions which is generated
by δ0 (the delta function with the support at zero) and its derivatives of order at most dmax.
(c) The spaces L1 and L2 are isomorphic, and an isomorphism is established by the Fourier transform.
(d) The characteristic submodule M(Q) is of finite codimension in (C[s])k (as a linear subspace).
(e) The degree and the dimension of the space L1 of solutions of (6.3) coincide with the degree and dimension
of the quotient space M ′ = (C[s])k /M(Q).
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Since the polynomial ring C[s] is Noetherian, it follows that the module M is finitely generated. According
to (6.2), this means that M has a finite system of generators of the form

{(lν(s))2 (λ1
ν e1 + · · ·+ λk

ν ek)},

where lν(s) are linear forms and λ ∈ Ck.
Let Mj be the projection of M onto the jth coordinate (C[s])k. This is the ideal in C[s] generated by the

forms {(lν(s))2 λj
ν}, where λj

ν �= 0. Let rj be the rank of the corresponding family of linear forms {lν(s)}.
Proposition 23. (a) For all j, the rank is rj = k.

(b) A complement to M , the space M ′, is the subspace of the space of families of polynomials in s whose total
degree does not exceed k. The space L2 is a subspace of the space of linear combinations of the delta function
and its derivatives of order at most k. The space L1 is a subspace of the space of families of polynomials in
u whose total degree does not exceed k.

Proof. Let there exist a j such that rj < k. Choose a linearly independent family of maximal rank
(L1(s), . . . , Lk′(s)), k′ < k, from the family {lν(s)}. Let us make, in the space of variable s, a nondegenerate
linear change s → s̃ such that s̃j = Lj(s) for j = 1, . . . , k′. In the new variables, the generators of Mj are
(s̃1)

2, . . . , (s̃k′)2. The complement of Mj to C[s̃] is infinite-dimensional. Indeed, it contains the entire infinite-
dimensional ring of polynomials in the last variable C[s̃k]. This immediately implies that the complement to
M is infinite-dimensional. This contradiction proves part (a).

Thus, among the generators of the ideal, there are the squares of all coordinates. Therefore, the complement
contains only polynomials whose degree with respect to any variable does not exceed one. In particular, this
means that the total degree does not exceed k. Returning to the old variables, we keep this estimate. Thus,
the projection of the complement onto each coordinate does not contain polynomials of degree greater than
k. This completes the proof of the assertion.

Lemma 4 immediately implies that, if A(u)(z, z) is a solution to (2.3), then

degu A(u)(z, z) � k − 1.

Arguments similar to those given above show that, if (C(u), b(u)) is a solution to (2.4), then

degu C(u) � k, degu b(u) � 2 k.

From these bounds, one can obtain general bounds for the degrees of the coefficients of an arbitrary element
of the algebra autQ. As a result, for the odd component, we obtain the bound (k + 1) for the degree, and,
for the even component, the bound 2k. However, one can proceed in different way. This will give a more
accurate information, and also does not use other bounds, except for the bound for the degree a obtained
above. One can first estimate the weight of the odd component, and then use the fundamental property of
the algebra.

Theorem 24. If Q is a nondegenerate model quadric codimension k, then
(a) the weight of fields of odd weight in autQ does not exceed 2 k − 1;
(b) the weight of an arbitrary field does not exceed 2 k, i.e., autQ = g−2 + g−1 + g0 + g1 + · · ·+ g2k; (c) the
degrees of the coefficients of fields in autQ do not exceed (k + 1).

Proof. By the bounds obtained for a and A, we immediately see that the weight of the odd component

2Re

(
(a(w) +A(w)(z, z))

∂

∂z
+ 2 i < z, ā(w) >

∂

∂w

)

does not exceed 2k − 1. This proves part (a). It follows from the fundamentality that there are no nonzero
of a weight exceeding 2k. This proves part (b). As was noted above, the degrees of the coefficients for the
fields of odd weight do not exceed (k + 1). We obtain a bound for the degree of the coefficients for fields of
even weight from the bound for the weight. If the weight of a field of even weight

2Re

(
C(w) z

∂

∂z
+ b(w)

∂

∂w

)

does not exceed 2k, then the degrees of both C(u)z and b(u) do not exceed (k + 1) either. This completes
the proof of the theorem.

As is well known [15], the group of local automorphisms of a nondegenerate quadrics is a subgroup of the
group of birational automorphisms of the ambient space Cn+k with a uniform bound for the degree. The
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bound obtained in the previous theorem for the degree of infinitesimal automorphisms enables us to give a
bound for the degree of automorphisms.

Corollary 25. Let Q be a nondegenerate quadric of type (n, k), and let autQ be a local group of its auto-
morphisms that are holomorphic in a neighborhood of zero. Then autQ consists of birational transformations
Cn+k whose degree does not exceed (3n+ 3k + 2)(k + 1).

7. OPEN QUESTIONS

If (n, k) is a CR-type (n is a CR-dimension and k is a codimension), then nondegenerate quadrics are
possible in the range 1 � k � n2.

Question 26. What are the CR-types in this range for which exceptional quadrics exist?
As we have seen, in addition to the cases k = 1, 2, 3 mentioned above for which there are no exceptional

quadrics, one can add k = n2 to the list of these codimensions (Proposition 20).
As was shown above (Theorem 7), there are no exceptional quadrics of codimension 4 for CR-dimension

n � 3. An example of an exceptional quadric of codimension k = 4 given in [3] has the CR-dimension n = 6.
As a special case of Question 26, the following question can be posed. What is the minimum CR-dimension
admitting exceptional quadrics of codimension 4? (Versions of the answer are 4, 5, 6.)

It was shown above (Theorem 24) that the weights of the positive components of the Lie algebra of a
nondegenerate quadric of codimension k do not exceed 2k. However, this bound is not supported by an
example, and the question of an sharp bound remains open.

Question 27. Are there non-degenerate quadrics for which the length of g+ is equal to 2k? If no, then
what is the exact bound?

For the (n, k)-cases in which exceptional quadrics occur, what is the subset of exceptional quadrics in the
collection of all nondegenerate quadrics of this type? As noted above, the exceptional quadrics are given by
a finite set of polynomial relations of the type “equal to zero” and “not equal to zero” (a semi-algebraic
set). Moreover, a natural point of view is to conduct this research in the moduli space [14], i.e., after a
factorization of the space H of families of k Hermitian forms by a known linear action rather than in the
space H itself. An answer to the following question is of interest.

Question 28. What is the codimension of the moduli subspace of the exceptional quadrics in the moduli
space of all nondegenerate quadrics?
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