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Abstract. In this paper, it is proved that the group AutQ of all holomorphic automorphisms a
holomorphically homogeneous nondegenerate model surface Q is a subgroup of the group of birational
isomorphisms of the ambient complex space (the Cremona group) of uniformly bounded degree. The
degree is estimated in terms of the dimension of the ambient space (Theorem 4). It is shown that no
condition of the theorem can be weakened. In the paper, the question of the connectivity of AutQ is
also considered (Theorem 7). This paper is directly adjacent to the previous paper of the author [7].
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1. INTRODUCTION

In the papers [2] and [7], as well as in other papers by the author, CR-manifolds were studied using
a uniform approach, namely, the model surface method. Here the class of manifolds under consideration
was determined using a certain �nondegeneracy� condition. In [2], this was the condition that the germ of
the CR-manifold is completely nondegenerate. The complete nondegeneracy condition is a general position
condition in the sense that any germ of positive CR-dimension can be made completely nondegenerate by a
small smooth deformation. However, the Bloom�Graham type of such a germ cannot be arbitrary. In [7], the
same program of the model surface method (a standard set of statements) was implemented for a class of
CR-germs of arbitrary �nite Bloom�Graham type with the condition of holomorphic nondegeneracy. Under
this pair of conditions, we call the germ nondegenerate. The standard set of statements mentioned above
includes a statement about the birationality of any automorphism of a model surface. In [7], this statement
was omitted. It was announced in the list of open questions (Conjecture 5). In the present paper, this gap is
eliminated (Theorem 1), i.e., it is proved that the birationality and the boundedness of degrees remain valid
under two conditions: the nondegeneracy and the holomorphic homogeneity. In the previous versions of this
assertion, the holomorphic homogeneity was not indicated as an independent condition. This is related to the
fact that all completely nondegenerate model surfaces are homogeneous. In a new context of nondegenerate
surfaces, this is no longer the case. In [7] a criterion of homogeneity of a model surface was given. Namely,
it was shown that the constancy of the Bloom�Graham type, which is obviously a necessary condition
for homogeneity, is su�cient for model surfaces. Further, it was shown there that the set of weights of a
homogeneous model surface is completely nonarbitrary. Namely, it was shown that this set has the following
form: m1 = 2, m2 = 3, . . . ,ml = l + 1.

The �rst assertion about the birationality of the automorphisms of any model surface was proved by
A. Tumanov [4] using W. Kaup's trick [3]. This was done then for the simplest Bloom�Graham type, namely,
for m = (2, k) (the model quadric of codimension k). Our construction is essentially a multiple recursive use
of Kaup�Tumanov's reasoning. Note also that the possibility to prove the birationality for a model surface
of an arbitrary Bloom�Graham type according to this scheme is related to an important structural feature
of the model surfaces, namely, to their �triangular� property.

The second main result of this paper (Theorem 2) is a description of the topological structure of the
group of holomorphic automorphisms of the model surface. This result is only partly new. In all versions
of the model surface method, starting from [1], the following simple consequence of the basic constructions
was implied. Since the subgroup G+ (the nonlinear automorphisms preserving the origin) is parameterized
by the kernel of the homological operator, it follows that this subgroup, as well as every linear space, is
connected and simply connected (part (a) of the theorem). We present the proof here for two reasons. First,
starting from the paper [7], the model surface method works in a much broader context. Second, having
an explicitly stated assertion is an opportunity for referencing. The other assertions of the content of the
theorem (parts (b) and (c)) are new.
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2. BIRATIONALITY

To make the proof of the general statement clear, we preface this proof with an analysis of a particular
case. Namely, we consider the �rst type which goes beyond the quadratic models m = {(2, k), (3,K)}. Here
we do not assume that the surface is completely nondegenerate. For the completely nondegenerate case, the
multiplicity k must be equal to n2, where n is the CR-dimension. In the general case, we have 1 ⩽ k ⩽ n2.
The nondegenerate model surfaces of this type were considered in detail in [6], and the birationality result
was announced there.

Thus, the model surface Q of the Bloom�Graham type m = {(2, k), (3,K)} is the surface in the space
Cn ×Ck ×CK with the coordinates (z, w = u+ i v, W = U + i V ) which is given by the equations

v = Φ(z, z̄), V = 2ReΨ(z, z, z̄), (1)

where Φ and Ψ are vector-valued forms linear in each of their arguments. In this situation, the �niteness of
the type is equivalent to the fact that the coordinates of these forms are linearly independent. We introduce
the weights of the variables as follows: [z] = 1, [w] = 2, [W ] = 3. This grading naturally extends to
complex and real power series. With the help of an additional agreement

[
∂

∂ z
] = −1, [

∂

∂ w
] = −2, [

∂

∂ W
] = −3,

the grading is also extended to vector �elds with analytic coe�cients. Then the Lie algebra of in�nitesimal
holomorphic automorphisms in a neighborhood of the origin of autQ becomes a graded Lie algebra. If Q is
nondegenerate, then the Lie algebra becomes a �nite-dimensional and �nitely graded algebra of the form

autQ = g−3 + g−2 + g−1 + g0 + g1 + · · ·+ gδ.

This algebra is formed by the vector �elds of the form

X = 2Re

(
f(z, w,W )

∂

∂z
+ g(z, w,W )

∂

∂w
+ h(z, w,W )

∂

∂W

)
,

where the coe�cients of the �elds are holomorphic in a neighborhood of the origin, and the �elds satisfy the
tangency condition, i.e.,

Im g = 2ReΦ(f, z̄), Imh = 2Re(2Ψ(f, z, z̄) + Ψ(z, z, f̄)), (2)

for w = u+ iΦ(z, z̄), W = U + 2 iRe(Ψ(z, z, z̄).
The fact that all gj for j > δ are equal to zero means, in particular, that the coe�cients of the �elds are

polynomials whose degrees do not exceed d = δ + 3.
It is clear that the �elds of the weights (-2) and (-3) are �elds of the form

X−3 = 2Re(µ
∂

∂W
), X−2 = 2Re(ν

∂

∂w
),

where µ and ν are arbitrary constant vectors in RK and Rk, respectively. A �eld of weight (-1) is a �eld
with the coe�cients zero, one, and two, respectively, of the weights, i.e.,

f = const = p ∈ Cn, g = a(z, p), h = α(z, z, p) + β(w, p).

Substituting these coe�cients into the tangency condition, we obtain

f = p, g = 2 iΦ(z, p̄), h = 2 iΨ(z, z, p̄) + β(w, p),

where β(w, p) is a real linear form which is determined by the relation

β(Φ(z, z̄), p) = 4ReΨ(p, z, z̄). (3)

The uniqueness of the solution to this equation with respect to β is ensured by the linear independence
of the coe�cients Φ, and the solvability for every p is a condition which is equivalent to the holomorphic
homogeneity of Q.

To the subalgebra g− = g−3 + g−2 + g−1 there corresponds the Lie subgroup G− consisting of triangular-
quadratic shifts. The holomorphic homogeneity of Q is equivalent to the fact that G− acts transitively on Q,
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which enables us to identify the model surface Q and the Lie group G− as CR-varieties. Note also that, for
any Φ and Ψ, the component g0 contains a �eld of the form

X0 = 2Re

(
z

∂

∂z
+ 2w

∂

∂w
+ 3W

∂

∂W

)
,

Let

χ = (z → F (z, w,W ), w → G(z, w,W ), W → H(z, w,W ))

be an automorphism of Q. Replacing χ by its composition with an appropriate transformation in G−, we
can assume that χ leaves the origin �xed. Here we use the holomorphic homogeneity of Q. The di�erential
of the automorphism χ takes vector �elds in a neighborhood of the origin in autQ to vector �elds in autQ.
Writing out that vector �elds with coordinates (A,B,C) and (R,S, T ) are connected by the mapping χ, we
obtain  Fz Fw FW

Gz Gw GW

Hz Hw HW

−1

·

 A(F,G,H)
B(F,G,H)
C(F,G,H)

 =

 R
S
T

 (4)

Let (e1, . . . , en) be the standard basis of the space Cn, (ν1, . . . , νk) the standard basis ofRk, and (µ1, . . . , µK)
of RK . Choosing these values for the parameters de�ning �elds in g−1, g−2, g−3, we obtain �elds generating
g−. Let us substitute all these �elds into (4) instead of (A,B,C) and write out the result thus obtained in
the block-matrix form. We have Fz Fw FW

Gz Gw GW

Hz Hw HW

−1

·

 En 0 0
2iΦ(F,En) Ek 0

2iΨ(F, F,En) + β(G,En) 0 EK

 = P (5)

where (En, Ek, EK) are unit matrices of the corresponding sizes, and P is a matrix of size N ×N composed
of the vectors (R,S, T ) that are images of vectors in g−, i.e., its elements are polynomials of degree at most
d. By the relation (5), this matrix is nondegenerate and the elements of the inverse matrix M = P−1 are
rational functions of degree at most dN . Let

M = P−1 =


M1

1 M1
2 M1

3

M2
1 M2

2 M2
3

M3
1 M3

2 M3
3

 .

Represent (5) in the form Fz Fw FW

Gz Gw GW

Hz Hw HW

 =

 En 0 0
2iΦ(F,En) Ek 0

2iΨ(F, F,En) + β(G,En) 0 EK

 ·

 M1
1 M1

2 M1
3

M2
1 M2

2 M2
3

M3
1 M3

2 M3
3

 (6)

From the �rst block row of this relation, we obtain

gradF = (Fz, Fw, FW ) = (M1
1 ,M

1
2 ,M

1
3 ),

i.e., gradF is rational, of degree at most dN .
The degree of a rational function is the maximum of the degrees of the numerator and denominator. The

weight (weighted degree) is calculated similarly. For further calculations, note that any arithmetic operations
with two rational functions of degrees d1 and d2 give a rational function whose degree does not exceed d1+d2.

Lemma 1. Let degR1 = d1, degR2 = d2; then deg (R1 ⋄R2) ⩽ (d1 + d2), where ⋄ stands for any of the

four arithmetic operations. The same is true for the weight of a rational function.

Substitute the �eld X0 into (5) instead of (A,B,C); we obtain F
2G
3H

 =

 Fz Fw FW

Gz Gw GW

Hz Hw HW

 R
S
T

 (7)
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The �rst block coordinate of this relation has the form F = Fz R + Fw S + FW T , whence we see that F is
rational, of degree at most d (N + 1). Returning to (6), from the second block line we obtain

Gz = 2iΦ(F,En)M
1
1 +M2

1 ,

Gw = 2iΦ(F,En)M
1
2 +M2

2 ,

GW = 2iΦ(F,En)M
1
3 +M2

3 .

Therefore, gradG is rational, of degree at most d (3N +1). Now the second coordinate (7) implies that G is
rational, of degree at most d (3N + 2). Similarly, from the third block row in (6) we obtain

Hz = (2iΨ(F, F,En) + β(G,En))M
1
1 +M3

1 ,

Hw = (2iΨ(F, F,En) + β(G,En))M
1
2 +M3

2 ,

HW = (2iΨ(F, F,En) + β(G,En))M
1
3 +M3

3 .

Whence it follows that gradH is rational, of degree at most d (7N + 6). Now it follows from the third
coordinate of (7) that H is rational, and the degree does not exceed 7 d (N + 1).

Thus, every automorphism χ that preserves the origin is a rational mapping of degree at most 7 d (N +1).
An arbitrary automorphism Q has the form η(χ), where η ∈ G− is a quadratic-triangular transformation.
Therefore, the �nal estimate for the degree of an arbitrary automorphism is 14 d (N + 1).

Lemma 2. Let Q ∈ CN be a nondegenerate model surface. Then the coe�cients of the vector �elds

forming autQ are polynomials of degree at most N3.

Proof.Let Q be a model surface of CR-dimension n and of codimension κ (N = n + κ) and autQ =
g−l + · · ·+ g0 + · · ·+ gδ, i.e., δ is the highest weight. It follows immediately from the results of [5] that the
automorphism of Q is uniquely is determined by its n (κ+ 1)-jet at a point. This implies that the same can
be claimed about the coe�cients of the �elds in autQ. Since, together with every vector �eld X, the algebra
autQ contains each of its graded components, it follows that this algebra cannot contain weight components
whose weight exceeds l n (κ+ 1), i.e., d ⩽ δ ⩽ l n (κ+ 1) ⩽ nκ (κ+ 1) ⩽ N3.

In particular, our argument shows that, for a surface Q of type m = ((2, k), (3,K)) we have d ⩽ 3n (k +
K + 1).

Statement 3. Let Q be a nondegenerate holomorphically homogeneous model surface of CR-dimension

n, of Bloom�Graham type m = ((2, k), (3,K)), and of codimension k +K; then AutQ consists of birational

transformations of the space CN , where N = n+ k +K, whose degree does not exceed

D(n, k,K) ⩽ 42n (k +K + 1)(n+ k +K + 1) or D(N) ⩽
21

2
(N2 − 1)(N + 3).

Let now Q be an arbitrary nondegenerate holomorphically homogeneous model surface. As shown in [7],
the set of weights under the condition of homogeneity is an interval of the positive integers (2, 3, . . . , l). In
this case, it is convenient for us to denote the coordinates of the ambient space as follows:

(z, w2, w3, . . . , wl), z ∈ Cn, wj = uj + i vj ∈ Ckj .

The weights are assigned to the variables as follows: [z] = [z̄] = 1, [wj ] = [uj ] = j, j = 2, . . . , l. This
convention introduces the grading of power series and vector �elds. Now the equations ofQ can be represented
in the form

vj = Φj(z, z̄, u2, . . . , uj−1), j = 2, . . . , l (8)

where the real vector-valued form Φj is homogeneous of weight j and is written in the reduced form (see
[7]). Since the algebra autQ = g− + g0 + g+ is nondegenerate, it is �nite-dimensional, �nitely graded, and
consists of �elds with polynomial coe�cients of uniformly bounded degree. The condition of holomorphic
homogeneity of Q is equivalent to the fact that dim g− = dimQ. Let us consider in more detail the structure
of the subalgebra g− = g−l + g−l+1 + · · ·+ g−2 + g−1 It consists of �elds of the form

X = 2Re

(
f(z, w2, . . . , wl)

∂

∂z
+ g2(z, w2, . . . , wl)

∂

∂w2
+ · · ·+ gl(z, w2, . . . , wl)

∂

∂wl

)
,
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satisfying the tangency condition, namely,

Im gj = dΦj(z, z̄, u2, . . . , uj−1)(f, f̄ ,Re( g2), . . . ,Re( gl)), for wj = uj+iΦj(z, z̄, u2, . . . , uj−1), j = 2, . . . , l.

Or, simply, in the coordinates, X = (f(z, w), g2(z, w), . . . , gl(x,w)). If Xj ∈ gj , then we write

Xj = (fj(z, w), g2,j(z, w), . . . , gl,j(z, w)).

Here [fj ] = j+1, [gν,j ] = ν+j, and the degrees, respectively, do not exceed the weights. For all −l ⩽ j ⩽ −2,

fj(z, w) = gj,2(z, w) = · · · = gj,−j−1(z, w) = 0,

gj,−j(z, w) = βj ∈ Rkj , gj,ν(z, w) = gj,ν(z, w, βj), −j + 1 ⩽ ν ⩽ l,

where gj,ν(z, w, βj) is a polynomial in (z, w) of weight j+ν which is linear in βj . Correspondingly, for j = −1
we have

f−1 = p ∈ Cn, g−1,ν(z, w) = g−1,ν(z, w, p), 2 ⩽ ν ⩽ l,

where g−1,ν(z, w, p) is a polynomial in (z, w), of weight ν − 1, which is real linear in p. The fact that the
tangency conditions are uniquely solvable with respect to gj,ν(z, w, βj) for any chosen βj and with respect
to g−1,ν(z, w, p) for a chosen p is a direct consequence of the holomorphic homogeneity of Q. Note also that,
for any Φj , the component g0 contains a �eld of the form

X0 = 2Re

(
z

∂

∂z
+ 2w2

∂

∂w2
+ · · ·+ l wl

∂

∂wl

)
(9)

Passing to the proof of birationality, we note that we follow the same Kaup�Tumanov scheme which was
shown above. Let

χ = (z → F (z, w2, . . . , wl), wj → Gj(z, w2, . . . , wl)), j = 2, . . . , l

be an automorphism of Q. Replacing χ by its composition with an appropriate transformation in G−, we
can assume that χ leaves the origin �xed. The di�erential of the automorphism χ takes any vector �elds in
a neighborhood of the origin in autQ to vector �elds in autQ. Writing out that the vector �elds with the
coordinates (A,B2, . . . , Bl) and (R,S2, . . . , Sl) are related by the mapping χ, we obtain


Fz Fw2 . . . Fwl

G2
z G2

w2
. . . G2

wl

. . . . . . . . . . . .
Gl

z Gl
w2

. . . Gl
wl


−1

·


A(F,G2, . . . , Gl)
B2(F,G

2, . . . , Gl)

. . .

Bl(F,G
2, . . . , Gl)

 =


R
S2

. . .
Sl

 (10)

Here, as above, we use the block-matrix arithmetic, i.e., we write a square matrix of size N ×N as a block
l × l matrix.

Let e = (e1, . . . , en) be the standard basis of the space Cn and let νj = (νj1 , . . . , ν
j
kj
) be the basis of the

space Rkj . By choosing the elements of e as values for parameters de�ning �elds in g−1 and the elements νj

for �elds in g−j , we obtain �elds generating the entire subalgebra g−. Arranging all such �elds in the form
of columns of a block square matrix T , we obtain

En 0 0 . . . 0
g−1,2(F,En) Ek2

0 . . . 0
. . . . . . . . . . . . 0

g−1,l−1(F,G
2, . . . , En) g−2,l−1(F,G

2, . . . , Ek2
) . . . Ekl−1

0
g−1,l(F,G

2, . . . , Gl−1, En) g−2,l(F,G
2, . . . , Ek2

) g−3,l(F,G
2, . . . , Ek3

) . . . Ekl


We denote the block element of the matrix M standing at the intersection of the i-th block row and the j-th
block column by M i

j , i.e.,

M = P−1 =


M1

1 M1
2 . . . M1

l

M2
1 M2

2 . . . M2
l

. . . . . . . . . . . .
M l

1 M l
2 . . . M l

l

 .
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Now we write the relations obtained from (10) in the form of a single matrix equality

J = T · P−1 = T ·M, (11)

where J is the Jacobian matrix of the mapping χ and P is the matrix composed of the �elds of the form
(R,S2, . . . , Sl) that are images of the basic �elds in g−1. If the number d is an upper bound for the degrees
of �elds in autQ, then the elements of the matrix M = P−1 are rational functions whose degrees do not
exceed N d.

Writing out the �rst block line of the relation (11), we obtain

gradF = (Fz, Fw2 , . . . , Fwl
) = (M1

1 ,M
1
2 , . . . ,M

1
l ), (12)

i.e., gradF is rational, of degree at most dN . Further, substitute the �eld X0 ∈ g0 into (10) instead of
(A,B2, . . . , Bl) (see (9)); we obtain

F
2G2

. . .
l Gl

 =


Fz Fw2

. . . Fwl

G2
z G2

w2
. . . G2

wl

. . . . . . . . . . . .
Gl

z Gl
w2

. . . Gl
wl




R
S2

. . .
Sl

 (13)

Writing out the �rst block coordinate (13), from (12) we conclude that F = Fz R + Fw2
S2 + · · · + Fwl

Sl.
Since l ⩽ K ⩽ N , we conclude that degF ⩽ 2 dN2.

Now, writing out the second block line (11), we obtain

G2
z = g−1,2(F,En)M

1
1 +M2

1 ,

G2
w2

= g−1,2(F,En)M
1
2 +M2

2 ,

. . .

G2
wl

= g−1,2(F,En)M
1
l +M2

l .

Therefore, gradG2 is rational and of degree at most d (2N2+2N). Then it follows from the second coordinate
(13) that G2 is rational and of degree at most d (2N2 + 2N + 1)N .

The bound for the degree of G2 is given here for the convenience of the reader. It is included in the total
recursive reasoning presented below.

Thus, now we are ready to describe the general (j + 1)-th stage of this process, namely, a bound for the
degree of Gj+1. Here we shall give an upper bound for the degree depending only on N ⩾ 2, and this bound
is not pretending to be accurate. As we have seen, this stage consists of two steps: a bound based on relation
(11) for the degree of the gradient Gj+1 and a bound based on relation (13) for the degree of the component
Gj+1.

Thus, let d1 be a bound for the degree of F obtained by us, i.e., d1 = d σ1 = 2 dN2, and let a value
dj = d σj , an estimate of the degree of Gj , be obtained at the j-th stage. Consider the the (j + 1)-th block
row of relation (11). The left-hand side of such a relation contains gradGj+1 and the right-hand side of (11)
has an expression in the form of a sum in which the number of summands does not exceed l ⩽ K ⩽ N .
Here every summand has the form of a product of gν,j+1(F,G

2, . . . , Ek−ν
) and of some block element of the

matrix M . Taking into account that the degrees of gν,j+1 are less than l and the degrees of the elements of M
are at most dN , we can claim that the degree gradGj+1 does not exceed d (l σj +N) l. Further, writing out
(j + 1)-th block coordinate (13), we see that Gj+1 is a sum of length l, where the degrees of the summands
do not exceed d (l σj +N) l + d, whence it follows that d σj+1 ⩽ d l ((l σj +N) l + 1). Thus,

σj+1 ⩽ l ((l σj +N) l + 1) ⩽ N3 (σj + 2) ⩽ 2N3 σj .

Taking into account that σ1 = 2N2 ⩽ 2N3 and that the length of the sequence (σ1, σ2, . . . ) does not exceed
N , we see that all degrees do not exceed d (2N3)N . According to Lemma 2, we have d ⩽ N3. Therefore,
the quantity N3 (2N3)N gives a bound for the degree of the automorphism χ. Now we should recall that
an arbitrary automorphism of Q can be obtained from χ by a composition with a triangular polynomial
transformation in G− whose degree does not exceed l− 1 ⩽ N . As a result, we obtain the following theorem.

Theorem 4. The group AutQ of holomorphic automorphisms of an arbitrary nondegenerate holomor-

phically homogeneous model surface Q ⊂ CN consists of birational transformations of CN , whose maximal

degree does not exceed

D(N) ⩽ N4 2N (NN )3 ⩽ exp (3N (ln(N) + 1)).
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Theorem 4 has two conditions: the nondegeneracy and the holomorphic homogeneity. Here, in turn,
the nondegeneracy condition splits into two conditions: the �niteness of the type and the holomorphic
nondegeneracy. If Q is a model surface whose Bloom�Graham type is in�nite, then it can be given in the
form (8) where, among the coordinates of some weighted homogeneous form Φj , there are identical zeros.
Then, subjecting the corresponding coordinate of the group w to an arbitrary real-analytic transformation
(the other coordinates are kept), we obtain an automorphism Q. That is, in this case, the birationality
assertion fails to hold. This assertion also becomes invalid if the second nondegeneracy condition is violated,
namely, the holomorphic nondegeneracy. Indeed, in this case, the algebra autQ contains nonpolynomial
�elds, which contradicts the birationality of AutQ.

We claim that the holomorphic homogeneity is also a necessary condition. A corresponding example was
considered in [8].

Example 5. Consider a model hypersurface of the spaceC2 of the formQ = {v = |z|4}. This hypersurface
is not holomorphically homogeneous. Its Bloom-Graham type varies from point to point. Let ξ = (a, b) ∈ Q
and let m(ξ) be the type at the point ξ; then

m((a, b)) = (4) if a = 0

m((a, b)) = (2) if a ̸= 0

Here autQ contains the �eld

X = Re

(
w z

∂

∂ z
+ 2w2 ∂

∂ w

)
.

To this �eld, there corresponds the 1-parameter subgroup of AutQ formed by the transformations of the
form

z → z√
1− 2 t w

, w → w

1− 2 t w
,

which are not rational.

The model surfaces obviously fall into the class of real algebraic manifolds. Therefore, we can claim that
the automorphisms of any nondegenerate model surface, regardless of its holomorphic homogeneity, are
algebraic (see [9], Theorem 13.1.4).

The automorphism groups of nondegenerate homogeneous model surfaces show examples of subgroups
of the group of birational automorphisms of a complex a�ne space with the condition of the uniform
boundedness of degrees. Such groups are of interest regardless of the CR geometry. In the paper [10],
a beautiful construction enabling one to construct such groups is given (see Theorem 3). Unfortunately,
this construction does not apply in our situation. In this paper, the following condition is imposed on the
group of automorphisms. In the space CN on which the group acts by birational transformations, there is a
chosen domain that is free of the singularities of the mappings. Although the local group AutQ consisting
of transformations generated by �elds in autQ consists of holomorphic mappings in a neighborhood of
the origin, we still have no guaranteed size of a neighborhood of the origin on which all transformations
are holomorphic. On the other hand, the entire Lie group of the automorphisms of Q may also contain
automorphisms having singularities at zero. Note here that, by the generation properties of Q, the model
surface cannot entirely be contained in the singular set of any birational transformation. Therefore, the
birationality assertion (Theorem 4) applies to all automorphisms of the model surface.

In this connection, two questions arise.
First. Describe the class of homogeneous nondegenerate model surfaces such that their automorphism

groups satisfy the condition of the paper [10]. As is well known, this condition is satis�ed by all quadratic
models (their Bloom�Graham type is equal to (2)) with the condition of positive de�niteness. Seemingly, in
the general case, we are talking about some analog of positive de�niteness.

Second. There is a request for some more general construction that could include the automorphism groups
of all homogeneous nondegenerate model surfaces.

The question of estimating the degree can be approached in a more di�erentiated way. For example,
we can consider the quantity D(m), which is the maximum of the degrees of automorphisms over all model
surfaces of a chosen �nite Bloom�Graham typem. Theorem 4 immediately implies that this quantity is �nite.
Further, we can, at least in the simplest situations, pose the question concerning the exact values of D(m).
For example, if we speak about model hyperquadrics (m = (2)), then D((2)) = 1. If there are quadratic
model surfaces of higher codimension k > 1 (quadrics), i.e., m = (2, . . . , 2) = (2, k), then D((2, k)) ⩾ k. We
do not know examples of quadrics with automorphisms whose degree is greater than the codimension.
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3. ON THE TOPOLOGICAL STRUCTURE OF THE GROUP rmAutQ0

We note right away that, in contrast to the study of the birationality question in the previous section,
the holomorphic homogeneity of Q is not assumed in this section.

Let Mξ be the germ of a nondegenerate real algebraic surface; then, as shown in [9], the group AutMξ

consists of algebraic mappings (Theorem 13.1.5) holomorphic in a neighborhood of ξ and has the structure
of a Lie group (Theorem 12.7.18). In particular, this result is applicable to any nondegenerate model surface
Q.

Thus, let Q be a nondegenerate model surface. Let us consider the following objects:
g− is the subalgebra of autQ consisting of �elds of negative weight, and G− is the connected Lie group

corresponding to g−;
g0 is the subalgebra of autQ consisting of �elds of weight zero, and G0 is the connected Lie group

corresponding to g0;
g+ is the subalgebra of autQ, consisting of �elds of positive weight, and G+ is the connected Lie group

corresponding to g+;
St is the stabilizer of the origin in AutQ0.
G− is the subgroup of triangular polynomial automorphisms of Q described in [7].
G0 is the subgroup of the automorphisms of Q (it is described in [7]) such that the action on the coordinate

z has the form (z → C z), where C is a nondegenerate linear transformation.
G+ is the subgroup of automorphisms of Q of the form (z → z + o(1), wj → wj + o(mj)), j = 1, . . . , l.

Statement 6. (a) Every automorphism of Q can be represented in the form τ ◦σ, where σ ∈ St, τ ∈ G−.

Moreover, σ and τ are de�ned uniquely, and there is a semidirect decomposition AutQ = G− ⋉ St.
(b) Any automorphism of Q in St can be represented in the form L ◦ N , where L ∈ G0 and N ∈ G+.

Moreover, L and N are de�ned uniquely, and there is a semidirect decomposition St = G0 ⋉ G+.

(c) The group G0 of quasilinear transformations (z → C z, wj → ρj(w), j = 1, . . . , l) has a faithful

representation of the form (z → C z, wj → ρj(w)) → (z → C z) in GL(n,C) and is isomorphic to a real

linear algebraic group.

Proof. The decompositions in (a) and (b) were discussed in [7]. The assertions about the semi-direct
product are veri�ed directly. The faithfulness of the representation in (c) is Theorem 5, part (f) in [7]. This
completes the proof of the statement.

Theorem 7. (a) G+ = G+; in particular, the Lie group G+ is connected and simply connected;

(b) The Lie group G0 has �nitely many connected components;

(c) G− = G−; in particular, the Lie group G− is connected. If Q is holomorphically homogeneous, then

G− is simply connected.

Proof. The recurrent process of calculating the components of G+ described in [7] (Poincar�e's construc-
tion) enables us to recover uniquely an element of G+ by the parameters contained in the kernel of the
homological operator. The set of these parameters is a linear space. All parameters belonging to the kernel
of the homological operator are realized by elements of G+. This completes the proof of part (a).

By part (c) of Statement 6, the group G0 is isomorphic to a real linear algebraic group. Item (b) is proved.
The group G− consists of transformations Sξ that are uniquely determined by the choice of the point

ξ = (a, b1, . . . , bl) of the same Bloom�Graham type as that of the origin. The process of constructing Sξ is
described in [7] (see the proof of Theorem 17). In essence, this construction is a process of reducing a surface
to the standard form at the point ξ. In the coordinates associated with a point ξ, every coordinate form
has the form of a sum of weight components. The form of the leading component coincides with that at the
origin, and the lower ones depend on the point ξ. The fact that a point ξ is a point of the same type as
the origin means that, in the process of reduction, all components of the lower weights are reduced to zero.
Here it is clear from the construction that the component of every weight is reduced separately. Therefore,
the transformation a → t a, bj → tmj bj , t > 0, takes ξ to a point of the same Bloom�Graham type. Letting
t tend to zero, we see that the set of points of the same type as the origin is connected. This implies the
contractibility and, in particular, the connectivity of G−. If Q is holomorphically homogeneous, then G− is
equivalent to Q both topologically and as a CR-manifold. In turn, Q is the graph of a polynomial mapping
over a linear space. This completes the proof of the theorem.

Corollary 8. The group AutQ0 is contractible on G0, and therefore the number of connected components

and all their homotopy groups coincide.
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Example 9. (a) If Q = {v = |z|2} is the projective sphere in C2, then G0 = C∗ and, correspondingly,
AutQ is not simply connected.

(b) If Q = {Imw = |z1|2 − |z2|2} is a hyperquadric in C3 with inde�nite Levy form, then G0 and,
correspondingly, AutQ0 have two connected components.
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