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Abstract. In the paper, the method of model surface is applied to arbitrary CR-manifolds
of finite Bloom–Graham type. A family of basic assertions is proved. It is proved also that,
for a model surface, the condition that the Bloom–Graham type is constant is a criterion for
the holomorphic homogeneity. Distinctions from the case of rigid models treated earlier are
clarifies. A series of questions and conjectures is formulated.
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1. INTRODUCTION

At the beginning of CR-geometry, H. Poincaré [1], applying his apparatus of working with power
series, studies the properties of the germ of real hypersurface of the two-dimensional complex
space that are invariant with respect to holomorphic transformations. It turned out here that
the key to understanding the situation is the germ of the 3-dimensional sphere which has several
extremal properties. For example, its 8-dimensional local group of holomorphic automorphisms has
the maximal dimension if we do not take into account the plane whose group is infinite-dimensional.
The equations of the germ of a nondegenerate hypersurface in C2 (in the coordinates (z, w = u+i v))
can be written out in the form

v = |z|2 + terms of higher degrees

Here the hypersurface {v = |z|2}, which is projectively equivalent to the standard sphere {|z|2 +
|w|2 = 1}, is just our model hypersurface.

Later on, this approach was developed and successfully applied to study CR-manifolds of diverse
dimensions [2] and codimensions [3]. Here the model surface, which is an analog of the sphere, was
somewhat modified. In [4] this approach (the method of model surface) was implemented for an
arbitrary real germ in general position (under the assumption of complete nondegeneracy).

Recently the g+-conjecture was proved in the papers by Sabzevari–Spiro [5] and Gregorovich [6].
Namely, it was proved that the stabilizer of the origin of a completely nondegenerate model surface
of highest weight exceeding two contains no nonlinear transformations. This can be expressed
in other words as follows. The subalgebra g+ of fields of positive weight in the Lie algebra of
infinitesimal automorphisms is trivial. We note here that, if we get rid of the condition of complete
nondegeneracy, then this is not the case. For example, {v = |z|4}is a hypersurface in C2 with the
highest weight four and a nontrivial subalgebra g+. Several interesting examples with g+ of an
arbitrary weight is contained in the paper [6] cited above.

After the proof of the conjecture, an interest to extending the method of model surface to classes
of CR-manifolds going beyond the framework of the completely nondegenerate manifolds increased.
The generating CR-manifolds of finite type form a natural extension of the class of completely
nondegenerate manifolds. In [12], the program of the method of model surface was implemented for
the manifolds of an arbitrary finite Bloom–Graham type with some rather burdensome additional
condition. The matter concerned the manifolds whose model surface has a condition of rigidness.
In the present paper, we get rid of this condition and consider arbitrary manifolds of finite type.
Here the Bloom–Graham theorem [8] connecting two views concerning the type of the germ of a
CR-manifold, namely, the geometric one (fields and commutators) are analytic (coordinates and
equations), is substantial for our presentation. In the present paper, we mainly deal with the

1



2

analytic definition of the type (see Subsec. 2). For the convenience of the reader, we present here
the geometric definition of type.

Let M be a smooth generating CR-submanifold of codimension K > 1 of a complex linear space,
let n > 1 be the dimension of the complex tangent, and let ξ ∈ M . Let D1 be the distribution of
complex tangents that is defined on M in a neighborhood of ξ, i.e., D1 = T c

M . This distribution can
be defined by a basis family of 2 n smooth real vector fields. Further, we define an infinite sequence
of distributions Dν defined by induction, Dν+1 = [Dν , D1]+Dν , ν = 1, 2, . . . . Let, further, Dν(ξ)
be the value of Dν at the point ξ. Thus,

T c Mξ = D1(ξ) ⊂ D2(ξ) ⊂ · · · ⊂ Dν(ξ) ⊂ . . .

Since this nondecreasing sequence consists of subspaces of TMξ, it follows that this sequence is
stabilized at some step. If the last subspace coincides with TMξ, then we say that M is a manifold
of finite type at the point ξ (if not, we say that M is of infinite type at ξ). Let, further, dν =
dimR Dν(ξ), and

2 n = d1 6 d2 6 . . . 6 dµ−1 < dµ = dµ+1 = · · · = d∞

Marking all indices ν > 2 at which a jump of dimension occurs, we obtain a finite strictly increasing
sequence 2 6 m1 < m2 < · · · < ml. Denote by kj , j = 1, . . . , l, the value itself of the positive jump
dmj − dmj−1. This very collection of data,

m = ((m1, k1), . . . , (ml, kl)),

plus the indication concerning the finiteness of infiniteness of the type is called the (geometric)
type of M at the point ξ. It can readily be seen that, if the type is finite, then the codimension K
is the sum of all kj . For the infinite type, this sum is less than the codimension.

In [8], these data are written out in another format, namely,

m = (m1, . . . , m1,m2, . . . , m2, . . . , ml, . . . , ml),

and here the number of repetitions of mj is equal to kj and, if the type is infinite, then the symbol
∞ is posed at the end of the sequence.

Further, for every Mξ (the germ of a real submanifold of a complex space at a point ξ), we
introduce the following objects:

aut Mξ, autξMξ, Aut Mξ, Autξ Mξ,

Here aut Mξ stands for the Lie subalgebra of germs of vector fields at ξ tangent to Mξ and generating
local 1-parameter groups of holomorphic transformations of Mξ. In the coordinates (z, w) these
fields have the form

X = 2 Re
(
f(z, w)

∂

∂ z
+ g(z, w)

∂

∂ w

)
, (1)

where f and g are germs holomorphic at ξ and autξMξ is the Lie subalgebra of aut Mξ consisting of
the fields vanishing at the point ξ. Each of these Lie algebras generates a local group of holomorphic
transformations of Mξ, Aut Mξ, and AutξMξ, respectively (the local automorphisms of the germ
and the stabilizer of the point in the local group of automorphisms).

2. ANALYSIS OF THE LOWER COMPONENTS OF THE
MAPPING AND THE BLOOM–GRAHAM THEOREM

Let M be a smooth generating real submanifold of a complex space CN of a positive CR-
dimension n and a positive real codimension K. In other words, M has the CR-type (n,K) at
every point, and here N = n+K. Let Mξ be the germ at the point ξ. Let Mξ be a generating germ
of a CR-submanifold of finite type

m = (m1, . . . ,m1,m2, . . . , m2, . . . ,ml, . . . , ml)

= ((m1, k1), (m2, k2), . . . , (ml, kl)),

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 2 2020



3

where mj and kj are positive integers, and 2 6 m1 < m2 < · · · < ml. As was said above, the main
result of [8] is the equivalence of the geometric and analytic definitions of the type of manifold at
a point. To formulate the analytic definition, we partition the coordinates of the ambient complex
space Cn+K into groups,

z ∈ Cn, w1 ∈ Ck1 , . . . , wl ∈ Ckl , k1 + · · ·+ kl = K.

Here the variables are equipped with weights: [z] = 1, [wj ] = mj . The complex conjugate variables
z̄ and w̄j obtain the same weights, and correspondingly uj = Re wj , vj = Im wj . This agreement
enables us to extend the grading to power series in these variables. If we set in addition

[ ∂

∂z

]
=

[ ∂

∂z̄

]
= −1,

[ ∂

∂wj

]
=

[ ∂

∂w̄j

]
= −mj ,

then we can extend the grading to vector fields. Denote a power series containing no terms of weight
µ and lower than that by o(µ).

Let the equations of the germ Mξ be represented in the form

vj = Φj(z, z̄, u1, . . . , uj−1) + o(mj), j = 1, . . . , l (2)

where the real vector-valued form Φj (i.e., its coordinates) have the homogeneous weight mj .
The tangent model surface of the germ Mξ is a real algebraic surface Q given by the relations

vj = Φj(z, z̄, u1, . . . , uj−1), j = 1, . . . , l (3)

The condition that the type is finite is a condition of nondegeneracy nature. To obtain the
condition that the type is finite in terms of forms Φ, one must make additional triangular-polynomial
transformations of coordinates which do not change the form of the equations and the weights of the
forms Φ and change these forms themselves (the reduction of Q to the standard form, Theorem 6.2
on p. 230 of [8]).

Every coordinate of every vector-valued form Φj is a linear combination of monomials of the
form

zα1
1 . . . zαn

n z̄γ1
1 . . . z̄γn

n uβ11
11 . . . u

β1k1
1k1

. . . u
β(j−1)1

(j−1)1 . . . u
β(j−1)kj−1

(j−1)kj−1

Let us formulate two conditions on the forms Φ.

(I) The coordinates of the forms do not contain monomials of the form

z1
α1 . . . , zn

αn uβ11
11 . . . u

β1k1
1k1

. . . u
β(j−1)1

(j−1)1 . . . , u
β(j−1)kj−1

(j−1)kj−1

and their conjugates for any α and β

To formulate the other condition, we need a general indexing of all coordinates of all vector-valued
forms Φ. Namely, let (φ1, . . . , φk1) be the coordinate forms of Φ1, further, let (φk1+1, . . . , φk1+k2)
be the coordinate forms of Φ2, and so on, up to the coordinates of Φl. Thus, a complete ordered
family of all coordinate forms is (φ1, . . . , φK).

(II) For every 1 6 J 6 K, the form φJ contains no summands of the form

c φj uβ11
11 , . . . , u

β1k1
1k1

, . . . , u
β(j−1)1

(j−1)1 , . . . , u
β(j−1)kj−1

(j−1)kj−1

for all j, such that j < J and c is a nonzero constant.

We say that the equations of the germ Mξ and the surface Q are written out in the standard
Bloom–Graham form if the coordinate forms satisfy conditions (I) and (II). Here we say that the
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manifold M at the point ξ and the surface Q at zero have the finite Bloom–Graham type m if no
coordinate form φj is identically equal to zero.

Remark 1. Condition (II), in contrast to condition (I), has recurrent nature.

Remark 2. The indexing of the weights m1, . . . ,ml and, correspondingly. of the vector coordi-
nates w1, . . . , wl has geometric interpretation (these are the indices of the elements of the embedded
sequence of subspaces of the tangent space at which the dimension of the germ grows, see [8]). For
this reason, the indexing of these objects is invariant with respect to locally biholomorphic or CR
transformations. At the same time, the choice of indexing of the scalar coordinates of the vector
coordinate wj itself is arbitrary and not holomorphically invariant.

Therefore, it is convenient for us to change the condition of [8] making it holomorphically invari-
ant. Namely, we assume that condition (II) holds for a pair of indices j < J only if they are related
to different weight groups, i.e., are scalar coordinates of different weighted vector coordinates (have
different weights). This is not required for the coordinates of the same weight. We keep the term
standard form for the Bloom–Graham formulation and use the term reduced form for our condition.
We denote by condition (II’) the weakened condition (II) itself.

Here the condition that the germ of a surface given by equations (2) has a given finite type m
in the reduced form differs from the similar condition for the standard form. Let us formulate both
the conditions.

A proposition from [8] (the condition of finite type for the standard form).
(a) The germ of a surface written by equations (2) in the standard form has a given finite type m
if and only if there are no identically zero forms among the scalar coordinate forms (φ1, . . . , φK).
(b) Every germ of finite type can be written in such a form.

The following proposition is an immediate consequence of this assertion.

Proposition 3 (the condition of finite type for the reduced form).
(a) The germ of a surface written by equations (2) in the reduced form has a given finite type m if
and only if the coordinate forms (φ1, . . . , φK) are linearly independent.

(b) Every germ of finite type can be written in such a form.

Proof. When passing from the reduced form to the standard form, the transformed coordinate
weighted forms φj are linear combinations of the original forms. Therefore, the appearance of the
identical zero is possible only if the original forms have a linear dependence.

Remark 4. Here it is clear that, if among the forms there are no identically zero ones, then a
linear dependence is possible only within the forms of the same weight group.

The parameters l > 1, ml > 2 have two interpretations. In the analytic representation, l is the
number of distinct weights, and ml is the maximal weight in the representation of equations (2)
in the standard or reduced form. In the geometric representation, l is the number of jumps of the
dimension in the sequence of subspaces beginning at the complex tangent at ξ and ending by the
full tangent space, and ml is the depth of the bracket construction needed to obtain the full tangent.
We call the number µ = ml the highest weight. In the case of an infinite type, we set µ = ∞.

Let there be a locally invertible holomorphic mapping

(z → f(z, w), wj → gj(z, w)), j = 1, . . . , l

of a germ M0 at the origin of a finite type m given by equations in the standard form

vj = Φj(z, z̄, u1, . . . , uj−1) + Fj(z, z̄, u), j = 1, . . . , l (4)

and another germ M̃0 of the same kind,

vj = Φ̃j(z, z̄, u1, . . . , uj−1) + F̃j(z, z̄, u), j = 1, . . . , l (5)
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where Fj and F̃j are o(mj). Let Q and Q̃ be their model surfaces given by the equations

vj = Φj(z, z̄, u1, . . . , uj−1), j = 1, . . . , l,

vj = Φ̃j(z, z̄, u1, . . . , uj−1), j = 1, . . . , l,
(6)

respectively.
Below we shall use the expansions

f =
∞∑
1

fµ, gj =
∞∑
1

gjµ, Fj =
∞∑

mj+1

Fjµ, F̃j =
∞∑

mj+1

F̃jµ,

where fµ, gjµ, Fµ, F̃µ are the components of the weight µ.
Writing out the condition that the image of M0 is contained in M̃0, we obtain the identity

Im gj = Φ̃j(f, f̄ , Re g1, . . . , Re gj−1) + F̃j(f, f̄ , Re g), j = 1, . . . , l,

for w = u + i(Φ + F )
(7)

Consider the lower components of (7).
Let us begin with the group of variables w1. In the weights from 1 to (m1 − 1) we obtain

Im g1ν = 0, where 1 6 ν 6 m1−1. Since every homogeneous form of weight ν < m1 is a holomorphic
form of the variable z, we conclude that g11 = g12 = · · · = g1(m1−1) = 0.

In the weight m1 we have g1m1 = a(z) + ρ1 w1, f1 = C z, where ρ1 and C are linear and a(z) is
a holomorphic homogeneous form of degree m1. We see that

Im (a(z) + ρ1 (u1 + i Φ1)) = Φ̃1(C z, C z)

Separating the component holomorphic with respect to z in this relation and taking into account
that Φ1 and Φ̃1 contain no holomorphic summands, we obtain a(z) = 0. We obtain Im ρ1 u1 = 0
from the linear component with respect to u1. After this, we have

ρ1Φ1(z, z̄) = Φ̃1(C z, C z)

Note that this relation is equivalent to the condition that the mapping (z → C z, w1 → ρ1 w1)
takes the “truncated” surface v1 = Φ1(z, z̄) of the space Cn+k1 to another “truncated” surface
v1 = Φ̃1(z, z̄).

Let us pass to the coordinate w2. The components g2ν , where ν < m2, are expressions of the
form

∑
ψαβ (z, w1), where ψαβ (z, w1) is a holomorphic multilinear form of degree α with respect

to z and β with respect to w1, and α + m1 β = ν. The components of identity (7) of the weights
ν < m2 give

Im (
∑

ψαβ (z, u1 + i Φ1)) = 0,

This implies that g2ν = 0 for ν < m2. This fact could be proved immediately from the identity thus
obtained. However, we use another way. Indeed, g2ν is a holomorphic function on the “truncated”
generating manifold Q(1) = {(z, w1) : v1 = Φ1(z, z̄)} whose imaginary part is equal to zero.
Therefore, g2ν is constant, and it vanishes since its weight exceeds zero.

In the weight m2 we have g2m2 =
∑

ψαβ (z, w1) + ρ2 w2, where α + m1 β = m2, and

Im
( ∑

ψαβ (z, u1 + i Φ1) = Φ̃2(C z, C z, ρ1 u1)− ρ2(u2 + i Φ2(z, z̄, u1))
)

By condition (I), the right-hand side contains no summands holomorphic with respect to z. Setting
z̄ = 0, we see that, if α 6= 0, then ψαβ (z, u1) = 0, and ψ0β (u1) is a real form of weight m2, which
we denote by θ2(w1), i.e., g2m2 = ρ2w2 + θ2(w1). The relation acquires the form

Im θ2(u1 + i Φ1) = Φ̃2(C z, C z, ρ1 u1)− ρ2(u2 + i Φ2(z, z̄, u1)))
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Note that this relation is equivalent to the condition that the mapping

(z → C z, w1 → ρ1 w1, w2 → ρ2 w2 + θ2(w1))

takes the “truncated” surface {v1 = Φ1(z, z̄), v2 = Φ2(z, z̄, u1)} of the space Cn+k1+k2 to another
“truncated” surface {v1 = Φ̃1(z, z̄), v2 = Φ̃2(z, z̄, u1)}.

We can proceed in this way up to the last weighted group corresponding to wl. Let us state the
result thus obtained.

Theorem 5. Let (z → f(z, w), wj → gj(z, w)), j = 1, . . . , l, be an invertible holomorphic
mapping of the germ (4) written in the reduced form onto another germ (5) of the same kind. Then

(a) This mapping has the form

(z → C z + o(1), wj → ρj wj + θj(w1, . . . , wj−1) + o(mj), j = 1, . . . , l),

where C ∈ GL(n,C), ρj ∈ GL(kj ,R) and where θj(w1, . . . , wj−1) is a homogeneous real form of
weight mj, and, for all j = 1, . . . , l,

Im θj(u1 + i Φ1(z, z̄), . . . , uj−1 + i Φj−1(z, z̄, u1, . . . , uj−2)))

= Φ̃j(C z, C z, ρ1 u1, . . . , ρj−1 uj−1)− ρj Φj(z, z̄, u1, . . . , uj−1)
(8)

(b) Here the triangular weighted homogeneous mapping

(z → C z, wj → ρj wj + θj(w1, . . . , wj−1), j = 1, . . . , l) (9)

takes the model surface Q to the model surface Q̃.
(c) For every j = 1, . . . , l − 1, the truncated mapping

(z → C z, wν → ρν wν + θν(w1, . . . , wν−1), ν = 1, . . . , j)

takes the truncated model surface Q(j) = {vν = Φν , ν = 1, . . . , j} of the space Cn+k1+···+kj to
another truncated model surface Q̃(j) = {vν = Φ̃ν , ν = 1, . . . , j}.

(d) The action of holomorphic mappings on the germs of manifolds of a given type generates
an action on the space of weighted homogeneous forms Φ = (Φ1, . . . , Φl) of the group of weighted
homogeneous triangular polynomial transformations of the form

Φj(z, z̄, u1, . . . , uj−1) → ρj Φj(C−1 z, C−1 z, ρ−1
1 u1, ρ−1

2 (u2 − Re θ2(u1 + i Φ1)), . . . ,

ρ−1
j−1 (uj−1 − Re θj−1((u1 + i Φ1), . . . , (uj−2 + i Φj−2))))

(10)

(e) The stabilizer of zero in the group of automorphisms of the model surface Aut0 Q0 contains
the 1-parameter subgroup

(z → t z, wj → tmj wj), t ∈ R∗ (11)

To this subgroup, there corresponds a vector field of weight zero,

X0 = 2Re
(
z

∂

∂ z
+

∑
mj wj

∂

∂ wj

)
, (12)

(f) If the model surface Q has finite type at zero, then an element of the stabilizer of this action,
i.e., a mapping (10), is determined uniquely by its z-coordinate, i.e., the parameter C ∈ GL(n,C).

Proof. In part (a), it remains to verify the invertibility of the linear mappings. This follows
from the fact that, as shown above, the differential of our holomorphic mapping at zero has a block-
triangular form, and the invertibility of the differential requires the invertibility of every diagonal
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block, i.e., of the mappings (C, ρ1, . . . , ρl). Part (b) was proved above, part (c) follows immediately
from (b), part (d) follows from (c). Part (e) is obvious. Let us prove part (f), assuming here that
Φ̃ = Φ. For the definition of (ρj , θj) we have

Im (ρj wj + θj(w1, . . . , wj−1)) = Φj(C z, C z, ρ1 u1, . . . , ρj−1 uj−1).

where wj = uj + i Φj(z, z̄, u1, . . . , uj−1) for j = 1, . . . , l. For a chosen C, these relations enable us to
uniquely determine (ρj , θj) in succession for j from 1 to l. Indeed, let (ρν , θν) be already uniquely
defined for ν = 1, . . . , j − 1, and there be two pairs (ρj , θj) and (ρj + δρj , θj + δθj); then

Im (δρj wj + δθj(w1, . . . , wj−1)) = 0, where

wν = uν + i Φν(z, z̄, u1, . . . , uν), ν = 1, . . . , j

Since the truncated surface

Qj = {vν = Φν(z, z̄, u1, . . . , uν), ν = 1, . . . , j}

has finite type, it follows that (δρj , δθj) = const, and this constant vanishes since the weight is
positive. This completes the proof of the theorem.

For the case in which the mappings (9) take the model surface Q onto itself, we denote the
corresponding subgroup of the group Aut0 Q0 consisting of these mappings by G0.

Remark 6. (a) As was shown in [7], for the case in which the model surface is rigid (Φ does
not depend on u), the nonlinear summands θj are absent.

(b) For the occurrence of a nonzero nonlinear summand θj , the presence of some integer condition
is needed, a “resonance,” namely, the existence of a representation of the form

mj = µ1 m1 + · · ·+ µj−1 mj−1

with nonnegative integer coefficients µν . In the absence of resonances, the subgroup G0 consists of
linear transformations only.

(c) In the general case, transformations in G0 are said to be quasilinear.

3. MODEL SURFACE Q

As noted above, our grading can be extended to germs of vector fields. As a result, the Lie
algebra of all real fields analytic in a neighborhood of zero decomposes into the direct sum of its
homogeneous components of weights from (−ml) and higher. Correspondingly, every Lie subalgebra
of the Lie algebra inherits this grading. In particular, aut Q =

∑∞
−ml

gν . The presence of the
grading subgroup (11) in the group of automorphisms of every model surface Q has an obvious but
important consequence.

Proposition 7. (a) Let X =
∑∞
−µ Xν ∈ aut Q be a vector field; then Xν ∈ aut Q for all ν.

(b) The algebra aut Q is finite-dimensional if and only if it is finitely graded, i.e., aut Q =∑δ
−µ gν . Here the algebra consists of fields with polynomial coefficients.

Here by δ = δ(Q) (highest positive weight) we have denoted the maximal ν such that gν 6= 0.
We assume that the equations of Q are written in the reduced form and are linearly independent.

This means that the model surface Q is of finite type at the origin, and therefore is minimal. In
this case, the criterion for the finite-dimensionality of the Lie algebra autQ0 is the condition of
holomorphic nondegeneracy [10]. In the general case, the condition of holomorphic nondegeneracy
does not have a constructive nature. This is a condition for the nonexistence of some vector field.
However, since Q is the graph of a real polynomial mapping, it follows that the verification of this
condition is reduced to verifying the maximality of the rank of some matrix. In a specific situation,
these conditions can be written out explicitly (see [12, 7]).
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Definition 8. If a model surface Q has finite type at the origin and is holomorphically non-
degenerate, then we shall say that the surface is nondegenerate at the origin. Here we say that a
CR-manifold M is nondegenerate at a point ξ ∈ M if the model surface Q of the germ Mξ at the
point ξ is nondegenerate at the origin.

For the germ of the manifold Mξ, the nondegeneracy condition at the point is the sufficient
condition of the finite-dimensionality of autMξ but is certainly not necessary.

Proposition 9. For a model surface Q, the nondegeneracy condition is a criterion of the finite-
dimensionality (finiteness of the grading) of aut Q0.

Proof. It can readily be seen that a violation of either of the two requirements of Definition 8
leads to infinite-dimensionality of autQ.

The surface Q is the graph of a real polynomial equation of the form (3), and therefore Q, at every
point, is generating a real algebraic submanifold of CN of codimension K without singularities.
The dimension of the complex tangent, i.e., the CR-dimension, is the same everywhere and is equal
to n = N−K. The family of K gradients of the defining equations has the maximum complex rank
K at all points of the space. However, the type can depend on a point of Q. In this connection, we
introduce the following subsets of Q.

Qm is the family of points ξ ∈ Q such that Q at ξ is a manifold of finite type whose Bloom–
Graham type is equal to

m = (m1, . . . ,m1,m2, . . . , m2, . . . ,ml, . . . , ml)

= ((m1, k1), (m2, k2), . . . , (ml, kl));

note that here the codimension is K =
∑

kj .
Qµ is the family of points ξ ∈ Q such that Q at ξ has the highest weight equal to µ, where

2 6 µ < ∞.
All the characteristics under consideration are holomorphically invariant, and therefore they are

constant on every orbit of the action of the group of holomorphic automorphisms of Q. As shown in
[4], all completely nondegenerate model surfaces are holomorphically homogeneous, i.e., the group
of holomorphic automorphisms acts transitively on them. Therefore, in the case of complete nonde-
generacy we have Q = Qm, where m is the type of Q at the origin. If the complete nondegeneracy
is absent, then the property of holomorphic homogeneity can be lost, and the picture becomes more
diverse.

To state the following result, we need a new definition. A subset of the space RN with the
coordinate x is said to be semi-algebraic if it is given by a condition of the form

pα(x) = 0, α ∈ A, qβ(x) 6= 0, β ∈ B,

where A and B are finite families of indices and pα and qβ are real polynomials. This term is
customarily used for a wider class of sets (more-and-less relationships are used). We use this term
due to the lack of a more suitable one.

Theorem 10. Let Q be a nondegenerate model surface.
(a) If µ(0) is the highest weight of Q at the origin, then µ(ξ) 6 µ(0) for all ξ, i.e., µ(0) is the

maximal value of the highest degree and, correspondingly,

Q =
µ(0)⋃
ν=2

Qν .

In particular, Q has no points of infinite type.
(b) Qν and Qm are real semi-algebraic subsets of Q.
(c) Both µ(ξ) and m(ξ) take on Q a finite family of values only.
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(d) Let µmin be the minimal value of the highest weight over all points of Q and let Qµmin be the
set of points with this highest weight. Then Qµmin is an open subset of Q.

Proof. The Bloom–Graham type determination procedure for Q consists of the weighted re-
decomposition of the right-hand sides of the equations at a new point and the reduction of the
relations thus obtained to the standard form (or to the reduced form). Both the procedures do
not increase the weights of the right-hand sides of the equations. From the viewpoint of geometric
definition of type, the fact that the weight of every variable does not increase can be explained as
follows. When re-decomposing the right-hand sides of the equations at a new point ξ, the highest
weight component (with respect to the old weight) at the new point remains unchanged. Let all
truncated model surfaces Q(ν) for ν < j be of finite type. Using a basis of vector fields generating
the distribution of complex tangents D1, we see that the finiteness condition of the type of Q(j)
at the point ξ remains the same, i.e., the weight of a variable can drop but cannot increase. This
proves (a).

By (a), to verify that a point belongs to a chosen finite type, it is sufficient to study only finitely
many conditions of linear dependence and independence of fields with polynomial coefficients.
Further, the set of points of a chosen highest weight is a finite union of sets of definite types, i.e.,
a finite union of semi-algebraic sets. This proves (b).

The inequality µ(ξ) 6 µ(0) implies the finiteness of the values µ(ξ) and, for a bounded highest
weight, there are only finitely many values of the types µ(ξ). This proves (c).

The highest weight is the number of nested operations of taking the brackets for base fields in
the complex tangent that are sufficient to obtain the full tangent. This condition can be written
out as a condition of completeness of the rank for brackets of a given depth. If this condition holds
at a point, then it holds in a neighborhood. Due to minimality, the depth cannot decrease. This
proves (d). The theorem is proved.

We note also that the minimal degree of the equations of Q, i.e., m1(ξ), is obviously equal to 2
on an open dense set.

With every point ξ of the model surface Q are connected characteristics, namely, the type at the
point m(ξ) and the highest weight at the point µ(ξ). The type that we originally associated with
Q and which occurs in the equations of Q is the type of Q at the origin m(0).

We can readily show that the type of points of a model surface need not be constant. Let a
hypersurface in C2 be given by the equation v = Re(z2 z̄). This is a model surface, and its type is
m(0) = (3). If we consider the same hypersurface at a point ξ = (a, b), then it can be written in
the form v = Re(a) |z|2 + Re(z2 z̄). Therefore, its type is m(ξ) = (2) if Re(a) 6= 0 and m(ξ) = (3) if
Re(a) = 0. Similarly, the highest degree is µ(ξ) = 2 everywhere except for Re(a) = 0 and µ(ξ) = 3
on the plane.

One of the main properties of model surface is that the local group of its holomorphic automor-
phisms parameterizes the family of holomorphic mappings between the germs of the same type. In
particular, the model surface is the most holomorphically symmetric surface, since the dimension of
the stabilizer of the model surface dominates the dimension of the stabilizer of any nondegenerate
germ.

Theorem 5 implies the following corollary.

Corollary 11. Every holomorphic mapping χ of the germ (4) written out in the reduced form
onto another germ (5) of this kind can be represented at the composition χ = ϕ ◦ ψ, where

ϕ = (z → z + o(1), wj → wj + o(mj)) (13)

and ψ ∈ G0, i.e., an element of the group of quasilinear automorphisms of Q̃ that preserves the
origin.

Let there be a mapping of (4) onto (5),

(z → z + f2 + . . . wj → wj + gmj(mj+1) . . . )

Let us write out relation (7) for this mapping and single out in it the components of the following
weights. In the coordinates of the group w1, we single out the component of the weight m1 + µ, in
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the coordinates of w2, we single out the component of the weight m2 + µ, and so on. We obtain

− Im gj(mj+µ) + dΦj(z, z̄, u1, . . . , uj−1)(f1+µ, f1+µ, Re g1(m1+µ), . . . , Re g(j−1)(mj−1+µ)) + · · · = 0,

1 6 j 6 l, and the arguments in f and g are wν = (uν + i Φν).
(14)

Here the dots stand for the terms of the relation that depend on the families

hν = (f1+ν , g1,(mj+ν), . . . , gj−1,(mj+ν)) for ν < µ.

The resulting relation (the homological equation) can be used to calculate the family hµ if all
families with lower indices are known. To do this, one must solve the nonhomogeneous linear
algebraic equation (14) with respect to hµ, where the expression indicated by the dots is determined
using the known values of hν for ν < µ. Since the dimension of the family of solutions of an
inhomogeneous linear equation does not exceed the dimension of the space of solutions of the
corresponding homogeneous equation, we see that the dimension of the family of mappings of (4)
into (5) does not exceed the dimension of the family of solutions of the homogeneous equation

− Im gj + dΦj(z, z̄, u1, . . . , uj−1)(f, f, Re g1, . . . , Re gj−1) = 0,

1 6 j 6 l, where the arguments in f and g are wν = uν + i Φν .
(15)

This equation is obtained by adding the homogeneous parts of relations (14) over all µ. Note now
that equation (15) coincides with the condition that the vector field of the form (1) is an element
of aut Q0. Thus, we have proved the following theorem.

Theorem 12. (a) The dimension of the family of mappings of (4) onto (5) preserving the origin
does not exceed the dimension of aut0 Q0; in particular,

dim autξ Mξ 6 dimaut0Q0

(b) Let Q be nondegenerate and let δ = δ(Q) be the index of the highest with respect to the weight
nonzero component of the algebra aut Q0. Then, if there are two mappings of (4) onto (5) preserv-
ing the origin and having the same weight δ-jets at the origin, then these mappings coincide. In
particular, an automorphism of Mξ with the identity δ-jet is the identity mapping.

This argument goes back to Poincaré [1] and is a version of the implicit mapping theorem in
the class of formal power series. A general outline of the implicit mapping theorem is as follows: if
the linear part of some relation is uniquely solvable with respect to some group of variables, then
the same can be said about the initial nonlinear relation. In the present case, the linear part of the
relation is the relation

L(f, g) = ∂zΦ(z, z̄, u)(f) + ∂z̄Φ(z, z̄, u)(f̄) + ∂uΦ(z, z̄, u)(Re g)− Img,

where wj = uj + i Φj , which, in turn, is precisely the condition that the field (f, g) is tangent to
the model surface Q.

Remark 13. The recursive scheme described above for computing the components of the map-
ping and using the operator L can be further improved and turned into a recurrent process of
computing the components of the mapping together with the reduction of equations of the germ
to a normal form. This was done in [1, 2] for nondegenerate hypersurfaces. The convergence of the
constructed normal form was also proved there. Moreover, the proof of convergence, even in this
simplest situation, required a considerable effort. For arbitrary manifolds of the finite type, it is not
difficult to describe the formal normal form corresponding to the operator L. The procedure for its
construction is reduced to the construction of a direct complement to the image of the operator L
in a suitable space of formal series. However, one can hardly hope to find here a convergent normal
form suitable for all situations in the general case.
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Let us fix some positive CR-dimension equal to n. There are types for which all nondegenerate
model surfaces of the given type are equivalent and their automorphism groups are isomorphic.
That is, in essence, there is only one model surface. However, this an exception. In general, the
space of nondegenerate weight forms Ω = {(Φ1, . . . , Φl)} splits into many orbits of the action of
part (d) of Theorem 5; moreover, as a rule, the family of orbits depends on continuous parameters
(has continuum many elements). In this connection, and also in connection with Theorem 12, we
formulate a question. Is it true that, for a chosen CR-dimension and a Bloom–Graham type, there is
a uniform bound, i.e., independent of the choice of a nondegenerate model surface, for the dimension
of the group? For some types, uniform bounds of this kind, which are exact, are written out.

Let us offer here an argument showing that such a bound exists in the general case as well. Let
us choose a CR-dimension n and some type m. Denote by D(n,m) the maximum of dimensions
of the automorphism groups over all nondegenerate model surfaces of the CR-dimension n and
the Bloom–Graham type m and by Ds(n,m) the maximum of dimensions of the stabilizers of the
origin for these n and m. Denote by D(n, µ) the maximum of dimensions of the automorphism
groups over all nondegenerate model surfaces of the highest weight µ = ml and the CR-dimension
n, and by Ds(n, µ), similarly, the maximum of dimensions of the stabilizers of the origin for these
n and µ. Denote by D(n, K) the maximum of dimensions of the automorphism groups over all
nondegenerate model surfaces of CR-dimension n and of codimension K, and by Ds(n,K) the
maximum of dimensions of the stabilizers of the origin for these n and K.

Theorem 14. Ds(n,m) 6 D(n,m) < ∞, Ds(n, µ) 6 D(n, µ) < ∞, and Ds(n,K) 6
D(n,K) < ∞.

Proof. Let us prove the first inequality. Let Q be an arbitrary nondegenerate model surface for
the chosen n and m and let aut Qξ be the Lie algebra at the point ξ. To estimate the dimension of
the algebra at zero, it suffices to estimate this dimension for a point close to zero outside a proper
analytic subset (at a point in general position). The surface Q is holomorphically nondegenerate
and has a finite type everywhere. Therefore, we can choose a point ξ close to zero at which Corol-
lary 12.3.3 of [10] can be applied to Q; according to this corollary, a local automorphism of Q
is uniquely determined by its jet at the point ξ of order (K + 1) n, where K is the codimension
corresponding to the type, i.e., the sum of the multiplicities for this type. Here the dimension of
the ambient space is n + K. Therefore, we can estimate the dimensions of the algebras using the
dimension of a jet. To prove the second inequality, we note that, for any chosen values of n and µ,
there are only finitely many types for the possible types m. Let us prove (c). Let Q be a model sur-
face. Consider the sequence of distributions Dν generated by complex tangents using the operation
of taking brackets. If there is a complete neighborhood of a point of Q where the dimension Dν is
not full and does not increase at every point by at least one, then this means that this surface has
the infinite type at every point of this neighborhood, which contradicts Theorem 10. Thus, at a
point in general position, the depth of successive operations of taking the bracket (and this is the
very highest degree µ at this point) does not exceed K + 1. Now the third inequality follows from
the second one. The bounds for the stabilizers are obvious. The theorem is proved.

The bounds for dimensions arising in this argument are obviously far from being exact.
The holomorphic nondegeneracy of a real analytic manifold is a global characteristic. The holo-

morphic degeneracy at one point means the holomorphic degeneracy at all other points. The same
holds for the holomorphic nondegeneracy. However, the finiteness of the type of a manifold at a
point is a characteristic which can vary even for a real analytic manifold. A simple example is the
hypersurface in C2 given by the equation v = u |z|2. However, as proved in Theorem 10, this is
impossible for any model surface. Theorems 10 and 12 imply the following corollary.

Corollary 15. If a model surface Q is nondegenerate (Definition 8 ) at the origin, then it is
nondegenerate at every point. In this case, dimaut Qξ < ∞ for every ξ.

We note another circumstance. According to Definition 8, the condition of nondegeneracy for a
manifold at a point is the condition of the nondegeneracy of its model surface at the point. In turn,
the nondegeneracy condition of the model surface consists of two requirements. From the condition
of the finiteness of the type and the holomorphic nondegeneracy. The condition of finiteness of the
type for a germ and the same condition for its model surface is one and the same condition (see
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[8]). How are the conditions of holomorphic nondegeneracy for a manifold and for the model surface
related? Theorem 12 immediately implies the following assertion.

Corollary 16. Let there be a germ of Mξ and its model surface Q0. If Q0 is nondegenerate,
then Mξ is holomorphically nondegenerate.

That is, the nondegeneracy of the model surface implies also the validity of both the conditions
for the germ. Here the simple example of the hypersurface in C3 of the form {v = |z1|2 + |z2|4}
shows that the holomorphic nondegeneracy of a manifold certainly does not imply the holomorphic
nondegeneracy of the model surface.

As proved in [7], for rigid model surfaces, i.e., for surfaces given by the equations vj = Φj(z, z̄), j =
1, . . . , l, the necessary condition of holomorphic homogeneity, namely, the condition of the constancy
of the Bloom–Graham type, is sufficient. The same criterion remains valid for an arbitrary model
surface of finite type.

Let a model surface Q be given by the equations

vj = Φj(z, z̄, u1, . . . , uj−1), j = 1, . . . , l,

where Φj is a form of weight mj in the reduced form, where the coordinate forms are linearly
independent, i.e., Q has the finite type m at the origin. Let ξ = (a , b1 + i Φ1(a, ā), . . . , bj +
i Φl(a, ā, b1, . . . , bl−1)) be some point of Q.

Theorem 17.
(a) For a model surface Q of finite type, a holomorphic automorphism that takes the origin to a

point ξ ∈ Q exists if and only if Q and ξ have the same Bloom–Graham type as that at the origin.
In particular, this means that the condition of constancy for the type is a criterion for holomorphic
homogeneity for the model surface Q.

(b) If the types at the origin and at ξ coincide, then one can translate the origin to ξ without
changing the weights of the coordinates of the space by a triangular-polynomial mapping Sξ of the
form

z → z + a, wj → wj + Pj(z, w1, . . . , wj−1; ξ), j = 1, . . . , j,

where Pj is a holomorphic polynomial in (z, w1, . . . , wj−1) whose weight is strictly less than mj;
moreover, this “shift” Sξ to the point ξ is defined uniquely.

Proof. Consider the transformation (z → z + a, uj → uj + bj), which transfers the origin to
the point (a, b1, . . . bl). For each vector-valued form Φj , we can write

Φj(z + a, z̄ + ā, u1 + b1, . . . , uj−1 + bj−1)

= Φj(z, z̄, u1, . . . , uj−1) + ∆Φj (z, z̄, u1, . . . , uj−1, a, ā, b1, . . . , bj−1),

where, for every chosen (a, b1, . . . bj−1), the expansion of ∆Φj in the sum of weight components
contains only weight components that are strictly less than mj . In new coordinates, the equation
of Q has neither a standard form nor a reduced form. The right-hand sides of the equations cease
to be weighted homogeneous.

The procedure of reducing to the standard form, which is described in [8], is a step-by-step
procedure indexed by the numbers of coordinates of the group w. That is, if we stop this process
before its final completion, then the weights already assigned to the processed variables are not
changed in what follows, as well as the form of the coordinates Φ obtained already in the standard
form. Consider the first group of equations corresponding to the coordinate w1. The variable z
has the weight 1, regardless of what follows. Accordingly, the weight (which is equal here to the
degree) of the form Φ1 does not change and is equal to m1. All possibilities for removing the
occurring summands of weights that are less than m1 are implemented by polynomially-triangular
transformation using the holomorphic property of the monomials of the form zα. In this way, all
pluriharmonic terms are removed. If, after this, some coordinate of the group w1 contains a term
of weight less than m1, then this means a type change. Namely, the occurrence of a new weight
which is less than the minimum weight m1. Thus, it follows from the condition of conservation of
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type that, after a triangular transformation of the form (z → z, w1 → w1 + P1(z; a, ā)), the first
group of equations returns to its previous form, namely, v1 = Φ1(z, z̄). Here the polynomial P1 is
defined uniquely.

Further, let we have reduced all equations of the groups (w1, w2, . . . , wj−1) at the point ξ to
the standard form. The weights of all these variables remained the same, and the corresponding
coordinate forms have not changed. Moreover, the weights of all summands standing on the right-
hand sides of any equation of the j-th group are well defined. In particular, the highest term
has the form Φj(z, z̄, u1, . . . uj−1) and the weight equal to mj . All the possibilities for the next
step use the holomorphic property of the monomials of the form zα wβ1

1 . . . w
βj−1
j−1 of weights less

than mj , and these are implemented by polynomial-triangular transformations of the form wj →
wj + P (z, w1, . . . , wj−1) (z and all the lower w’s are kept), where the weight of the polynomial P
is strictly less than mj and the polynomial is uniquely defined. If not all terms of lesser weight
disappear, than this means a decrease of the multiplicity of the weight mj and an increase of the
multiplicity of one of the lesser weights. Thus, it follows from the condition of conservation of type
that the equation of j-th group returns to the old form vj = Φj(z, z̄, u1, . . . uj−1) and the variables
of the group wj preserve the old weight mj . Completing this process, we obtain a proof of the
theorem.

In the proof of Theorem 17, we have used the process of constructing standard or reduced forms
of the surface equation. It makes sense to return once again to this process and to give it a more
algebraic and algorithmic description.

Initially, we have equations of the germ of a manifold at the origin, of the form v = F (z, z̄, u),
where F is a real vector-valued power series without the free and linear terms. Denote the space of
all real scalar series in (z, z̄, u) by F . The complex tangent at the origin is the plane of the variable
z, i.e., {w = 0}. We assign the weight 1 to the variable z and the weight ∞ to the other variables.
Below, the weights of the variables in the group w will obtain new finite values.

First step. Let m1 > 2 be the lowest nonzero degree existing among the coordinates F , and let
F1 be the finite-dimensional linear subspace of F generated by the components of the coordinates
of F of weight m1. Let H1 be the subspace of F1 generated by real and imaginary parts of the
holomorphic monomials in z (the space of pluriharmonic polynomials of weight m1), and the space
S1 is the subspace of polynomials in the standard form. Then the space F1 is decomposed into the
direct sum H1 + S1. Let k1 = dimS1 and let Φ1 = (Φ1

1, . . . , Φ
k1
1 ) be some basis of this space. Then

the equations of the germ, after a triangular-polynomial transformation, can be represented in the
form

v1 = Φ1(z, z̄) + o(m1), ṽ1 = Φ̃1(z, z̄, u1, ũ1)

where w1 = (w1
1, . . . , w

k1
1 ) where is the part of variables of the group w that correspond to the

coordinates Φ1, the variables w̃1 are the remaining variables of the group w, and Φ̃1 are the
corresponding right-hand sides of the equations. Now the variable w1 ∈ Ck1 obtains the weight m1,
and we go to the second step.

Second step. Let m2 > m1 be the lowest nonzero degree occurring among the coordinates
Φ̃1, and let F2 be the finite-dimensional linear subspace of F generated by the components of
the coordinates Φ̃1 of the weight m2. Let H2 be the subspace of F2 generated by the real and
imaginary parts of the holomorphic monomials in (z, w1) (the space of pluriharmonic polynomials
of weight m2 on Q(1)) and the space S2 be the subspace of polynomials in the standard form. Then
the space F2 decomposes into the direct sum H2 + S2. Then the equations of the germ, after a
triangular-polynomial transformation, can be represented in the form

v1 = Φ1(z, z̄) + o(m1), v2 = Φ2(z, z̄, u1) + o(m1), ṽ2 = Φ̃2(z, z̄, u1, u2, ũ2)

where w2 = (w1
2, . . . , w

k2
2 ) is the part of variables of the group w̃ that correspond to the coordinates

of Φ2, the variables w̃2 are the remaining variables of the group w, and Φ̃2 are the corresponding
right-hand sides of the equation. The variable w2 ∈ Ck2 obtains the weight m2 and we go to the
next step.

In the case of a germ of finite type, this process forms the equations of the germ in the reduced
form in finitely many steps. Write H =

∑l
1Hj and S =

∑l
1 Sj . Denote by π the projection to the
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component S. Now a condition ensuring that there is a “shift” Sξ of the origin to a point ξ can be
given in the following form.

Proposition 18. An automorphism of Q taking the origin to the point

ξ = (a , b1 + i Φ1(a, ā), . . . , bj + i Φl(a, ā, b1, . . . , bl−1))

exists if and only if
π(∆Φj(z, z̄, u1, . . . , uj−1, a, ā, b1, . . . , bj−1)) = 0

for all j = 1, . . . , l.

Proof. This follows from our argument in the proof of Theorem 16.

Theorem 19. (a) If Q is holomorphically homogeneous, then the list of weights defining the
type of Q can have only the form

(m1 = 2, m2 = 3, . . . ,ml = l + 1).

(b) If Q is a homogeneous model surface of codimension K, then the highest weight µ(Q) is not
greater than K + 1.

Proof. If m1 > 2, then, for a ∈ Cn in general position, Φ1(z + a, z̄ + ā) contains nonzero not
pluriharmonic summands. This means the reduction of the minimal weight m1. Similarly, if there
is a weight mj for which the weight mj − 1 is absent, it follows that, for a shift of Φj to a point in
general position, ∆Φj obtains nonzero summands of weight mj − 1 that (Theorem 17) cannot be
reduced to zero. This means the change of type and contradicts the homogeneity. We obtain (a);
part (b) follows immediately from (a).

Remark 20. When moving to a point ξ ∈ Q, the type can change (remaining finite), while the
highest weight ml cannot increase. After making a triangular-polynomial change of coordinates tak-
ing the new components to the standard form, we obtain the equations of Q in the new coordinates
with the origin at the point ξ. If the type had really changed, then the surface cannot be model in
these new coordinates. In the coordinate at which the weight had reduced, there is an unremovable
component of higher weight which was the lowest before the shift and which is not affected by
the process of reduction to the standard form. However, this does not prevent the case in which
the surface turns out to be locally biholomorphically equivalent to its new model surface. But,
to implement this equivalence, one needs transformations going beyond the triangular-polynomial
transformations that were used in the reduction.

The algebra aut Q can be represented in the form g− + g0 + g+, where g− is the sum of weight
components of the negative weights, g0 stands for the fields of weight zero, and g+ for the fields of
positive weights. Obviously, each of the three summands in a Lie subalgebra of aut Q. Let us give
a description of the groups corresponding to these subalgebras.

Let G− be the family of triangular-polynomial “shifts” Sξ for all ξ belonging to the orbit Orb0

of zero in the automorphism group of Q. Obviously, G− is a group with respect to the composition
operation. Here we obtain a one-to-one correspondence (ξ → Sξ) between the points of Orb0 and
shifts in G−.

Every automorphism of Q can be represented as a composition of a transformation preserving
the origin, i.e., belonging to the stabilizer, and a transformation belonging to G−. Therefore, the
orbit of the origin Orb0 with respect to the entire group AutQ coincides with the orbit with respect
to the action of G− only.

Let
ξ = (a, b1 = br1 + i bi1, b2 = br2 + i bi2, . . . , bl = brl + i bil) ∈ Orb0

then Sξ, in accordance with the procedure for obtaining equations in the reduced form, has the
form

z → z + a,

w1 → w1 + ∆1(z, a, ā) + b1,

w2 → w2 + ∆2(z, w1, a, ā, br1) + b2,

. . .

wl → wl + ∆l(z, w1, . . . , wl−1, a, ā, br1, . . . , brl−1) + bl,

(16)
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Here the correcting summands ∆j (z, w1, . . . , wj−1, a, ā, br1, . . . , brj−1) are jointly homogeneous of
weight mj , are holomorphic with respect to (z, w1, . . . , wj−1), and vanish at (a, b1, . . . , bj−1) =
0. Thus, if we take the expansion of ∆j in weights of (z, w) only, then the expansion contains
components of the weights from 1 to mj − 1. If ξ = 0, then Sξ = Id, i.e., to the origin, there
corresponds the identity of G−.

As a manifold, G− coincides with the orbit Orb0 of the origin, i.e., with some submanifold of
Q containing the origin. For the case in which Q is homogeneous, if we identify the space Cn+K

of variables (z, w) and the space Cn+K of variables (a, b), then we identify Q and G−. Here G−
becomes a CR-submanifold of Cn+K globally holomorphically equivalent to Q. After this, we can
say that Q acts on itself by triangular-polynomial automorphisms of Cn+K .

It follows from our description of the shifts Sξ that the Lie algebra corresponding to G− is
contained in g−. We claim that, if a field in g− of the form

X = Re(f
∂

∂ z
+

∑
gj

∂

∂ wj
)

vanishes at the origin, then it vanishes. Let us prove this by induction. The first step. The factor f
has the weight zero, i.e., this is a constant, and it is equal to zero. Further, g1 consists of components
of the weight not higher than m1− 1. The first two weighted coordinates of the 1-parameter group
of transformations generated by X have the form

z → z, w1 → w1 + g1(z) t + terms of higher order with respect to t

Substituting this into the first group of equations of Q, we obtain Im(g1(z)) = 0. This implies that
g1 = 0. Let gν = 0 for ν < j. In just the same way we see that the imaginary part of the holomorphic
coefficient gj is zero on the truncated generating model manifold Qj . Since this coefficient is equal
to zero at the origin, it is zero. Thus, g− is the Lie algebra corresponding to G−.

Let us now consider the subgroup G0 of transformations belonging to the stabilizer of the origin
of the form

(z → C z, wj → ρj wj + θj(w1, . . . , wj−1), j = 1, . . . , l),
where C ∈ GL(n,C), ρj ∈ GL(kj ,R) and where θj(w1, . . . , wj−1) is a homogeneous real form of
weight mj and, for all j = 1, . . . , l,

ρj Φj(z, z̄, u1, . . . , uj−1) + Im θj((u1 + i Φ1(z, z̄)), . . . , (uj−1 + i Φj−1(z, z̄, u1, . . . , uj−2))))

= Φj(C z, C z, ρ1 u1, . . . , ρj−1 uj−1)
(17)

To obtain a description of the Lie algebra corresponding to G0, we consider a 1-parameter
subgroup of the form

C z = z + t α z + . . . , ρj wj = wj + t βj wj + . . . ,

θj(w1, . . . , wj−1) = t γj(w1, . . . , wj−1) . . . ,

where t ∈ R, and the dots stand for higher-order terms with respect to t. Let us substitute this in
(17), single out the part linear in t, and set t = 0. We see that the Lie algebra corresponding to
this Lie group consists of the vector fields of the form

X = Re(αz
∂

∂ z
+

l∑

j=1

(βj wj + γj(w1, . . . , wj−1)
∂

∂ wj
)) (18)

and

βj Φj + Imγj((u1 + i Φ1), . . . , (uj−1 + i Φj−1) = 2 Re(∂z Φj(α z)) +
j−1∑
ν=1

∂uν Φj(βnu uν) (19)

Here we see that (18), under condition (19), is the general form of a field of weight zero, i.e., g0 is
the Lie algebra corresponding to the Lie group G0.

Let, further, G+ is the subgroup of automorphisms of Q having the form
z → z + o(1), wj → wj + o(mj), j = 1, . . . , l;

it is clear that the fields generating transformations in G+ can belong to g+ only.
Let us sum up.
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Theorem 21. (a.1) g− is the Lie algebra corresponding to the Lie group G−. Here the corre-
spondence ξ → Sξ identifies the orbit Orb0 of the origin and the subgroup of triangular-polynomial
transformations G−.

(a.2) If Q is holomorphically homogeneous, i.e., Orb0 = Q, then G− turns out to be realized as
the family of triangular-polynomial transformations of the form (16) parametrized by the system
of parameters (a, b) ∈ Cn+K satisfying the same system of equations as the points of Q. This
parametrization enables one to regard G− as a real algebraic surface in Cn+K holomorphically
equivalent to Q as a CR-manifold.

(b) g0 is the Lie algebra corresponding to the Lie group G0. Here nonlinear terms γj in g0, as
well as nonlinear terms θj in G0, can be present only in the presence of resonances of the form
mj = µ1 m1 + · · ·+ µj−1 mj−1 with nonnegative integers µν .

(c) g+ is the Lie algebra corresponding to the Lie group G+. Here, if Q is nondegenerate, then
g+ is finite-dimensional, finitely graded, and consists of fields with polynomial coefficients.

Proof. It remains to prove only the correspondence G+ → g+. This follows from the fact that
every element in the stabilizer of zero can be represented as a composition of a mapping in G+ and
a mapping in G0 (Corollary 11) and from part (b).

4. OPEN QUESTIONS

As noted above, the subalgebra g+, under the assumption that Q is nondegenerate, consists of
finitely many weight components g1 + · · ·+gδ. If Q is completely nondegenerate and µ > 3, then, as
was shown by Kossovskiy [11], Sabzevari and Spiro [5], and also Gregorovich [6], we have g+ = 0,
i.e., δ = 0. If Q is nondegenerate only, then this is not the case. A question to estimate the highest
positive weight δ(Q) of the subalgebra g+ for an arbitrary nondegenerate Q arises.

Conjecture 1 (a new version of the g+-conjecture):
There is a constant C(n,m) such that, for all nondegenerate model surfaces Q with the CR-

dimension n and the Bloom–Graham type m, the bound δ(Q) 6 C(n,m) holds. In other words, for
chosen n and m, the value of δ cannot be arbitrarily large.

The question of connecting this model surface theory of finite type to the Tanaka theory [17] is
closely related to these problems. In this connection, we can suggest the following conjecture.

Conjecture 2: If Q is nondegenerate and holomorphically homogeneous, then g− is fundamental.
In this case, the problem concerning the bound for δ(Q) (the highest positive weight of g+) can

be treated in the context of Tanaka prolongation.
As was shown in Theorem 18, for a homogeneous model surface, the list of weights has a very

definite form mj = j + 1. What can be said about their multiples kj? For the surface

vj = (Imz)j+1, j = 1, . . . , l

of the type (2, 3, . . . , l + 1), we have k1 = · · · = kl = 1. This is a surface of CR-dimension 1 and
codimension l. This example was examined in [22]. On the other hand, for completely nondegenerate
model surfaces, the multiplicities grow rapidly as the weight increases. However, it is clear that the
multiplicities cannot be arbitrary.

Question 3: Describe the conditions satisfying by the multiplicities of weights (k1, . . . , kl) for
a holomorphically homogeneous model surface.

As shown in Theorem 10 (part (d)), if µmin is the minimal value of the highest weight over all
points of Q, then Qµmin is an open subset of Q. However, we do not claim that this is the only
open stratum.

Question 4: Are there weights ν > µmin for which Qν is open? That is, are there open strata
that differ from the minimal one?

Let us choose a pair (n,K), i.e., the CR-dimension and the codimension. As shown in Theo-
rem 14, there is a uniform bound for the dimension of automorphisms D(n, K) for all nondegenerate
model surfaces.

Conjecture 5 (a new version of the dimension conjecture):
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Let Mξ be an arbitrary generating real analytic germ of CR-dimension n and of codimension
K. If dim aut Mξ is finite, then

(5.a) for the full dimension, dim aut Mξ 6 D(n, K),

(5.b) for the dimension of the stabilizer, dim autξ Mξ 6 Ds(n,K),

That is, it is claimed that, if the dimension of the group of the germ is finite, then it does not
exceed the maximum dimension over all nondegenerate model surfaces of the same CR-type (i.e.,
CR-dimension and codimension), and the dimension of the stabilizer does not exceed the maximum
dimension of the stabilizers. Certainly, when formulating a hypothesis, one could choose the highest
weight µ or the type m rather than the codimension K.

For a hypersurface Γ in C2, i.e., for n = K = 1, part (a) of the conjecture is rather obvious.
Indeed, if the Levi form of this hypersurface is identically zero, then, locally, this is a hyperplane,
and the dimension is infinite. Let this condition fail to hold. In a neighborhood of ξ ∈ Γ, take nine
fields belonging to aut Γξ. We consider these fields in a neighborhood of a close point at which Γ
is Levi nondegenerate. The dimension of the algebra does not exceed there the dimension of the
algebra of the model sphere, i.e., eight. Thus, the fields are linearly dependent, and, by analyticity,
this dependence continues to the point ξ. However, even in this situation, an estimate for the
dimension of the stabilizer, i.e., part (b), is a much more subtle problem requiring more subtle
reasoning [18]. For a hypersurface in C3, i.e., for K = 1 and n = 2, Conjecture (5.a) was proved in
[19] and Conjecture (5.b) in [20]. For a hypersurface in C4, i.e., for K = 1 and n = 3, the question
is open for now.

In [21], using an example of a surface of CR-type (2,5), it was shown that, if the class of model
surfaces is treated as that of completely nondegenerate model surfaces, then the conjecture fails to
hold. Namely, an example of a surface of this type was given, which is not completely nondegenerate,
and whose automorphisms have the dimension that is larger than that for all completely nonde-
generate model surfaces of this type. In the new terminology, the surface from this example is a
nondegenerate model surface of CR-dimension n = 2, its Bloom–Graham type is m = (2, 2, 3, 3, 4),
and the codimension is K = 5.

In [7], for rigid model surfaces Q, it was shown that the group Aut Q consists of birational
mappings of the space CN whose degrees are bounded by a constant depending only on n and
K. The proof is based on the trick of W. Kaup [15]. Apparently, this remains true for the general
model surfaces of finite type.

Conjecture 5: Let Q be a nondegenerate holomorphically homogeneous model surface of
CR-dimension n and the Bloom–Graham type m; then the group Aut Q consists of birational
transformations of CN whose degrees are bounded by a constant depending on n and m only.

Any generating real analytic submanifold of M that has a finite type at a point ξ, as we have
seen above, can locally be regarded as a perturbation of the model surface. It is appropriate to ask
a question about the conditions of holomorphic equivalence of the germ Mξ and its model surface
Q. By analogy with hypersurfaces, we call such germs spherical at the point ξ. It is clear that, if
a germ Mξ is equivalent to Q0, then the stabilizer of ξ in aut Mξ contains a field X0 6= 0, namely,
the field corresponding to (12). We can suggest a criterion of sphericity at a point, which is close
to tautology.

Proposition 22. A generating germ Mξ is spherical if and only if the equations of Mξ in some
coordinates have the form (3) and the field X0 has the form (12) .

Proof. Writing the equation of Mξ in these coordinates in the form (2) and using the extensions
(11) generated by X0, we obtain (3).

Note that the condition of finiteness of type is not used here. Using the field X0, we can naturally
introduce a grading on autMξ. After this, we can propose several necessary conditions for sphericity
related to the fact that, in the coordinates (3), the field (12) generates the adjoint action on every
weight component aut Q0,

X → adX0(X) = [X, X0]

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 27 No. 2 2020



18

The equivalence of Q means that the field X0 can be linearized, and the adjoint operator gener-
ated by it is diagonalized with the known family of eigenvalues, namely, (1,m1, . . . , ml), with the
multiplicities of these values kj corresponding to the type.

Question 7: Suggest a constructive criterion for the sphericity of a manifold of a chosen Bloom–
Graham type.

For some CR-types, in particular, for hypersurfaces, an answer to Question 7 is known.
Let Mξ be the germ of a nondegenerate holomorphically homogeneous submanifold of a complex

space and let Q be its model surface at the point ξ. Let M be a real analytic embedded submanifold,
in some domain, which is a representative of our germ. It immediately follows from the local
homogeneity of M that the model surfaces at all points of M are equivalent to Q, i.e., M has in
essence the same model surface everywhere. However, there is no reason for the model surface Q
itself to be holomorphically homogeneous. Here is the related question.

Question 8: Is there a locally homogeneous real manifold M such that its unique model surface
Q is not homogeneous?

5. WHAT REMAINS BEHIND THE SCENES

Consider the example of a hypersurface from [23]. This is a hypersurface in the space Cn+2 with
the coordinates (z1, . . . , zn, ζ, w = u + i v) which is given by the equation

v = 2 Re(z1ζ̄ + · · ·+ znζ̄n).

This hypersurface is of the Bloom–Graham type m = (2), and the model surface Q = {v =
2 Re(z1ζ̄)} is holomorphically degenerate; the dimension of its automorphism group is infinite,
while the automorphisms of the hypersurface itself are finite-dimensional (Theorem 12 becomes
meaningless). We obtain these facts using the standard approach in which the weights of all coordi-
nates z and ζ are the same and equal to 1. However, if we arrange the weights differently, namely:
([ζ] = 1, [zj ] = 1 + n− j, [w] = n + 1), then the surface becomes weighted homogeneous (of weight
n +1). Moreover, this hypersurface is holomorphically homogeneous. Using the “weighted” version
of the Poincaré construction, we can obtain a bound for dimension of the automorphisms for the
germ of the perturbed hypersurface

v = 2Re (z1ζ̄ + · · ·+ znζ̄n) + o(n + 1).

It is clear that a “weighted” theory of model surface finite type is behind this example.
Moreover, the first step in constructing such a theory, namely, the proof of a “weighted” analog of
the Bloom–Graham theorem, has already been made by M. Stepanova [13]. Such a theory, when it
will be constructed, will significantly expand the scope of applicability of the model surface method.

Problem 9: Construct a “weighted” theory of model surfaces of finite type that includes the
possibility to introduce different weights of the coordinates of the complex tangent and based on
the Bloom–Graham–Stepanova type of a manifold.

Global theory of singularities. A nondegenerate model surface is a globally defined object
(algebraicity, polynomial nature of the automorphism algebra, etc.); however, at the same time
it is connected with the original manifold locally, because this is a characterization of the germ
at a point. Let there be a smooth compact real submanifold M of the complex space CN of real
dimension greater than N . Under this condition, the complex part of the tangent space at every
point must have positive dimension. By a small deformation in a neighborhood of some point of M ,
one can remove all degenerations, namely, make the germ generating, completely nondegenerate,
and nonspherical. If we assume that we are in a situation where g+ = 0, then, adding to the
nonsphericity some simple additional condition of nondegeneracy (let us call this condition the
additional asymmetry), we may assume that the CR-structure in this neighborhood reduces to
the {e}-structure, and we have a CR-invariant frame of the tangent bundle over this neighborhood
(see [25]). However, there are global conditions that are formulated in terms of characteristic classes
of the tangent bundle that prohibit the trivialization of the tangent bundle over the whole manifold.
If M is such a manifold, then, after any deformation, there should be points on M at which some
of the listed conditions (generation property, complete nondegeneracy, nonsphericity, additional
asymmetry) are not satisfied.
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Here is an example of such a situation. Let M4 be a smooth (or even real analytic) 4-dimensional
compact submanifold of C3, i.e., the codimension is K = 2. Locally, after a small deformation, we
can always assume that M4 is a generating completely nondegenerate manifold of CR-dimension
n = 1 and its Bloom–Graham type is m = (2, 3). Let M4 be topologically simple, for example,
diffeomorphic to a 4-dimensional sphere, which, as is known, is not parallelizable. What kinds of
singularities are possible for such a manifold? Consider Tξ M , the tangent to M at some point ξ.
There are two possibilities. Either this plane contains a one-dimensional complex tangent, or it is
itself a two-dimensional complex plane. In the first case, M is in a neighborhood of ξ a generating
CR-manifold of CR-dimension one and of codimension two, and the Bloom–Graham type is well
defined for M . In the other case, we are dealing with an RC-singular point. The set of these points
is obviously closed. In terms of complex gradients of local defining functions, M = {ρ1 = ρ2 = 0},
the condition that a point is RC-singular reduces to the fact that the gradients (gradρ1, gradρ2)
are collinear. The collinearity of two three-dimensional vectors gives two complex conditions or four
real conditions. We can expect that four relations on a 4-dimensional compact manifold in general
position have only a finite, possibly empty, set of solutions. At each point of the complement to this
set, the Bloom–Graham type is well defined. Moreover, after a small deformation, we may assume
that, at the point in general position (outside a proper analytic subset), this is the base type (2, 3).
We call the points of the complement to this set the BG-singular points. Thus, the problem is
reduced to the description of the set RC and of BG-singular points.

Degenerations at the level of 1-jet (RC-singular points) were studied in a series of papers
(see [27]). However, it cannot be excluded that unremovable degenerations touch also the Bloom–
Graham type of a point.

Problem 10: Describe generic (i.e., unremovable by a small deformation) degenerations and
their invariants.

Surfaces of infinite type. Here is a simple example of such a hypersurface in C2:

v = u |z|2.
This hypersurface has infinite type at the origin, and also at all points of the complex line w = 0.
At the other points, this hypersurface has finite type(2) and Levi nondegenerate. For real analytic
hypersurfaces, the finiteness of the type at a point in general position and the holomorphic nonde-
generacy are equivalent [10]. Therefore, to prove Conjecture (5.a), one can ignore points of infinite
type lying on a proper analytic submanifold.

However, for manifolds of greater codimension. a situation is possible in which a holomorphically
nondegenerate manifold has infinite type everywhere. Moreover, the dimension of the algebra of
local automorphisms can be either infinite or finite. Thus, for such manifolds, the holomorphic
nondegeneracy is only a necessary condition, and the question concerning a criterion of finite-
dimensionality of the automorphisms for the germs of such manifolds is open. At the same time,
for the surface of a finite type on a dense open set, the holomorphic nondegeneracy is a criterion
for finite-dimensionality in accordance with the Stanton–Ebenfelt theorem [10].

Problem 11: Let there be a holomorphically nondegenerate real analytic submanifold whose
type at all points is infinite. Find a criterion for the finite-dimensionality of the holomorphic auto-
morphisms of the germ of such a submanifold.
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