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Abstract. In the present paper, the results recently obtained by the author for model man-
ifolds with the Hörmander numbers (2,3) without the condition of complete nondegeneracy
are extended to an arbitrary Bloom–Graham type. Here a simplifying assumption is made
that the model surface is rigid.
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A CR-manifold in general position is completely nondegenerate [1]. The condition of com-
plete nondegeneracy, in the spirit of the Bloom–Graham constructions [2], can be formulated both
analytically and geometrically. In geometric terms, this means that the Levi–Tanaka algebra (the Lie
algebra of vector fields generated by complex tangent fields) is a free graded Lie algebra. In an-
alytical terms, this is a condition of the Bloom–Graham type. Namely, the multiplicity of every
Hörmander number for a chosen dimension of a complex tangent is maximal. The complete nonde-
generacy of the germ of a manifold at a point is equivalent to the complete nondegeneracy of the
tangent model surface.

The consideration of completely nondegenerate model surfaces showed that the case of quadratic
model surfaces studied earlier (in which the length l of the Levi–Tanaka algebra is equal to two)
differs significantly from the general case l > 2. The Lie algebra of infinitesimal automorphisms of a
completely nondegenerate germ of a CR-manifold is a finitely graded Lie algebra containing negative
graded component g−, the zero component g0, and the positive component g+. The components
g− and g0 are always nontrivial. For l = 2, there is a lot of examples with g+ �= 0. At the same
time, for l > 2, no example with g+ �= 0 is known. This enabled us to formulate the corresponding
conjecture. This conjecture was proved for l = 3 in [4], and for the CR-dimension equal to one
in [5].

In 2018, almost simultaneously, two independent proofs of this conjecture in full were published.
The first was given by Sabzevari and Spiro [6] and the other, a day later, by Gregorovich [7]. The
theorem proved by them has a lot of consequences. For example, for l > 2, the theorem implies
directly that the biholomorphic mapping of the germ of a completely nondegenerate manifold on
another such germ is uniquely determined by the restriction of the differential of the mapping at
a single point to the complex tangent. This assertion is similar to Henry Cartan’s theorem for do-
mains of bounded form and to the Beloshapka–Loboda theorem for nonspherical real hypersurfaces.
Another consequence concerns completely nondegenerate model manifolds. The corollary is that
the stabilizer of a point in the group of holomorphic automorphisms of the model surface is some
(explicitly described) subgroup of the complete linear group. In other words, the stabilizer of a
point contains no nonlinear transformations.

Moreover, we note that, beyond the framework of the condition of complete nondegeneracy,
there are many examples of model surfaces with nontrivial g+-subalgebra and, respectively, with
nonlinear automorphisms in the stabilizer of a point. Thus, the proof of the conjecture increases
the interest in such model surfaces, which are the very subject of study of the present paper.

In [3], a theory of model surfaces with Hörmander numbers (2, 3) without the condition of
complete nondegeneracy was suggested. In the present paper, which can be regarded as a natural
continuation of [3], a similar construction is carried out for arbitrary Bloom-Graham type. That is.
an arbitrary set of Hörmander numbers of arbitrary multiplicities is admitted. In this case, however,
it is assumed that the model surface is rigid (for the definition, see below).
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2 BELOSHAPKA

Let the coordinates in the complex space CN be divided into groups

z ∈ Cn, w1 ∈ Ck1 , . . . , wl ∈ Ckl , n+ k1 + · · ·+ kl = N, wj = uj + i vj , 1 � j � l.

Here a family of weights 2 � m1 < m2 < · · · < ml is given. A weight 1 is assigned to a variable z
and the weight mj to a variable wj . Consider a germ Mξ given in some coordinates with the origin
at the point ξ by equations of the form

vj = Φj(z, z̄) + o(mj), 1 � j � l, (1)

where Φj is a real vector-valued form of homogeneous degree mj containing no pluriharmonic terms
and o(μ) is the sum of summands depending on (z, z̄, u) of weight exceeding μ. If the coordinates
of all vector-valued forms Φj are linearly independent, then the given germ has the following type
with respect to Bloom–Graham:

m = ((m1, k1), (m2, k2), . . . , (ml, kl)) = (m1, . . . ,m1,m2, . . . ,m2, . . . ,ml, . . . ,ml).

In particular, it is a germ of finite type.
In this case, the tangent model surface to the germ Mξ is the surface Q given by the equations

vj = Φj(z, z̄), 1 � j � l. (2)

Here we say that the germs given by equations of the form (1) are germs subordinated to the model
surface Q. It is clear that here the tangent space at the origin is {v = 0}, and its complex part is
{w = 0}. That is, the CR-dimension is n, and z is the coordinate that parametrizes the complex
tangent. Moreover, the codimension of the manifold is equal to K = k1+ · · ·+kl, and the dimension
(2n +K).

It is not true that any germ of finite type m has local equations of the form (1). According to
the Bloom–Graham theorem, every germ of type m has equations similar to (1), but the forms Φj

may depend on u = Rew. If there is no dependence of the forms Φj on u = Rew, then we say that
the model surface Q is rigid. It can readily be seen that this statement is equivalent to the fact
that, among the automorphisms of the surface Q, there are shifts of the form

(z → z, w → w + b) for all b ∈ RK .

The term “rigidity” is used, even in CR-geometry, in several ways. Its use in the situation under
consideration does not seem to be very successful; however, since it is customary, we shall use
it. In what follows, in this paper, we assume that the model surface Q is rigid. We stress that
this assumption is made only with respect to model surfaces and does not include the germs of
CR-manifolds that are their perturbations.

The above definition of rigidity is related to a fixed system of local coordinates. One can sug-
gest its coordinateless version. Namely, the rigidity of a germ means that, in the Lie algebra of
infinitesimal automorphisms, there is a field that differs from zero at the center of the germ and is
transversal there to the complex tangent.

Proposition 1.
(a) The germ Mξ and its model surface Q have finite type m = ((m1, k1), (m2, k2), . . . , (ml, kl)) if

and only if there are no identical zeros among the coordinates of the forms Φj in the Bloom–Graham
normal form.

(b) The germ Mξ and its model surface Q have finite type m = ((m1, k1), (m2, k2), . . . , (ml, kl))
if and only if the coordinates of all forms Φj are linearly independent.

(c) If the coordinate forms are linearly dependent, then Q has infinite type and is not minimal
at the origin.

Proof. The parts (a) and (b) follow from Corollary 8.3 of [2], and (c) is obvious.
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POLYNOMIAL MODEL CR-MANIFOLDS WITH THE RIGIDITY CONDITION 3

Let two germs Mξ and M̃ξ̃ be holomorphically equivalent. The type of a germ is a holomorphic
invariant, and therefore, the types of the germs coincide. Let the common type of the germs be
m = ((m1, k1), (m2, k2), . . . , (ml, kl)), and let the surfaces Q and Q̃ be the corresponding tangent

model surfaces each of which is defined by the families of forms {Φj} and {Φ̃j}. Let, further,

(z → f(z, w), wj → gj(z, w))

be a (holomorphic in a neighborhood of the origin) invertible mapping taking Mξ to M̃ξ̃ and
preserving the origin. In what follows, we shall use expansions of the form

f(z, w) =
∞∑

1

fj(z, w),

where fj stands for the jth weight component of the expansion f .

Proposition 2.
(a) The lower terms of the mapping have the form

f(z, w) = C z + o(1), gj(z, w) = ρj wj + o(mj), (3)

where C ∈ GL(n,C) and ρj ∈ GL(kj ,R); here

Φ̃j(z, z̄) = ρ−1
j Φj(Cz,Cz). (4)

(b) The linear mapping (z → C z, wj → ρj wj) takes Q onto Q̃, i.e., two model surfaces are
holomorphically equivalent if and only if they are linearly equivalent.

Proof. Let the equations of germs have the form

vj = Φj(z, z̄) + ϕj(z, z̄, u), vj = Φ̃j(z, z̄) + ϕ̃j(z, z̄, u).

Then the relations expressing the fact that, if (z, w) ∈ Mξ, then (f, g1, . . . , gl) ∈ M̃ξ̃, have the form

Im g1 = Φ̃1(f, f̄) + ϕ̃1(f, f̄ ,Re g),

. . .

Im gl = Φ̃l(f, f̄) + ϕ̃l(f, f̄ ,Re g),

for wj = uj + i (Φj(z, z̄) + ϕj(z, z̄, u)).

(5)

Separating the components of weight from 1 to m1 in the first of these relations, the components
from 1 to m2 in the second one, etc., we obtain (a), which immediately implies (b). This completes
the proof of the proposition.

Note that relation (4) defines an action of the direct product of linear groups

GL(n,C)×GL(k1,R)× · · · ×GL(kl,R)

on the space of forms Φ = (Φ1, . . . ,Φl) which define model surfaces of a given type. That is, two
model surfaces are CR-equivalent if and only if the corresponding families of forms belong to the
same orbit of the above action. By Proposition 2, any invariants of this actions are holomorphic
invariants of a germ. This enables us to describe, using the Hilbert basis theorem, the moduli space of
model surfaces of a fixed type, to construct a “Gaussian” mapping of a manifold of given type into its
moduli space, and to give a definition of CR-characteristic classes. The corresponding constructions
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4 BELOSHAPKA

for completely nondegenerate surfaces were described in [9]. All of them are transferred to the
present context without modifications.

To understand the CR-geometry of a germ, its holomorphic automorphisms are of great interest.
Let autMξ be the Lie algebra of infinitesimal automorphisms. These objects consist of germs of
real holomorphic vector fields of the form

X = 2 Re

(
α

∂

∂z
+

∑
βj

∂

∂w j

)
, (6)

where (α, β1, . . . , βl) are holomorphic in a neighborhood of the point ξ, and the field X is tangent to
Mξ at the points of Mξ. Every field of this kind generates a local one-parameter group of invertible
holomorphic mappings of the germ into itself. The family of mappings generated in this way is
the local automorphism group of Mξ, which we denote by AutMξ. In autMξ one can distinguish
the Lie subalgebra autξMξ which consists of the vector fields vanishing at ξ. The fields in this
subalgebra generate local one-parameter groups of holomorphic transformations fixing ξ. These
transformations form the local subgroup AutξMξ of AutMξ.

The weights of variables (which were introduced above) enable us to introduce a grading in the
Lie algebra of vector fields in space CN . To this end, the agreement on the weights of variables
must be extended to coordinate differentiations by setting

[
∂

∂z

]
= −1,

[
∂

∂w j

]
= −mj .

After this, autMξ also obtains the structure of a graded Lie algebra that splits into a direct sum
of graded components, beginning with a component of weight (−l) and, generally speaking, going
up to +∞. Denote the component of weight j of the algebra autQ by Gj , the sum of the negative
components of the algebra autQ by G−, and that of the positive ones by G+. Here we have aut Q =
G−+G0+G+ and aut0 Q = G0+G+. The algebra of a model surface Q has several specific features.

Proposition 3.

(a) If a field X =
∑+∞

−l Xj belongs to aut Q, then ∀j Xj ∈ aut Q.

(b) aut Q contains a field of weight zero,

X = 2 Re

(
z

∂

∂z
+Σ mj wj

∂

∂w j

)

to which a one-parameter subgroup of stretchings corresponds,

z → et z, wj → emj t wj .

(c) The subalgebra G− = G−l + · · · + G−2 + G−1 generates the subgroup G− of holomorphic
transformations of Q, and thus the orbit of the origin under this subgroup coincides wuth the orbit
of the origin under the complete group of automorphisms.

(d) The Lie algebra is finitely graded (only finitely many components are nonzero in the expansion
in the components) if and only if this algebra is finite-dimensional. In this case, the algebra consists
of vector fields with polynomial coefficients.

(e) The condition that a field (6) belongs to aut Q0 is the relation

2 Re (i βj(z, w) + 2 Re (∂Φj(z, z̄)(α(z, w))) = 0 for wj = uj + i Φj(z, z̄). (7)

Proof. The tangent space to Q is defined by the relations

Im (dwj) = 2 Re (∂Φj(z, z̄)(dz))
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POLYNOMIAL MODEL CR-MANIFOLDS WITH THE RIGIDITY CONDITION 5

which implies (e). Every substitution does not change the weights wj , and therefore, the linear
relations (7) are relations for every graded component of a field Xj which is formed by homogeneous

component of the coefficients, namely, from (αj+1, βj+m1

1 , . . . , βj+ml

l ). This proves (a). The parts
(b) and (c) are obvious, and (d) follows from (a). This completes the proof of the proposition.

A criterion for the finite-dimensionality of the Lie algebra autMξ of infinitesimal automorphisms
of a germ of finite type is the holomorphic nondegeneracy ([11]). According to the definition, the
holomorphic degeneracy of Q implies the existence of a nonzero holomorphic vector field, i.e., a
field of the form

X = α
∂

∂z
+

∑
βj

∂

∂w j
,

where (α, β1, . . . , βl) are holomorphic in a neighborhood of the origin, which is tangent to Q, i.e.,
satisfies the condition

βj = 2 i ∂Φj(z, z̄)(α) for wj = uj + i Φj(z, z̄). (8)

This criterion for finite-dimensionality is not constructive in itself. However, one can make this
criterion quite constructive when Q is an algebraic surface of special form (as has been done in the
cases of the Hërmader numbers (2) and (2, 3) considered earlier).

Note that X = 0 if and only if α = 0. Moreover, the validity of these relations on Q implies their
validity in a neighborhood of the origin.

Theorem 4. Each of the following conditions is a necessary and sufficient condition for the
holomorphic degeneracy of Q.

(a) The existence of a homogeneous holomorphic Cn-valued form a(z) �= 0 on Cn of degree not
exceeding (l − 1)(n − 1) and such that, for all (z, η, ζ) in Cn,

∂∂Φj(z, ζ̄)(a(z), η̄) = 0.

(b) The existence of a homogeneous holomorphic Cn-valued form a(z) �= 0 on Cn of degree
not exceeding (l − 1)(n − 1) and such that, for all z in Cn and every i1 and I1 (i.e. 1 � i1 � n,
1 � i2 � n),

∂∂Φj(z, ēi1)(a(z), ēi2 ) = 0,

where ei is an element of the standard basis in Cn.

(c) The rank of the system of K n2 linear equations with respect to an unknown A ∈ Cn given
by

L(Φ)(z)(A) = ∂∂Φj(z, ēi1)(A, ēi2) = 0

is less than n for all z for all j, i1, i2), i.e., 1 � j � l, 1 � i1 � n, 1 � i2 � n.

Proof. Let us choose a field α(z, w) holomorphic in a neighborhood of zero. A necessary and
sufficient condition that the coefficients (β1, . . . , βl) defined by (8) on Q are holomorphic in a
neighborhood of the origin are the tangent Cauchy–Riemann equations. Let η ∈ Cn be an arbitrary
vector. Consider the CR-vector field on Q of the form

X̄η̄ = η̄
∂

∂z̄
− 2 i

∑
∂̄Φj(z, z̄)(η̄)

∂

∂w̄j
.

If (η1, . . . , ηn) is a basis in Cn, then the family of fields (X̄η̄1
, . . . , X̄η̄n

) is a basis family of CR-fields
on Q. Applying these fields to relations (8), we obtain relations that are a criterion for the existence
of holomorphic coefficients βj ,

∂∂Φj(z, z̄)(α(z, w), η̄) = 0, ∀η ∈ Cn, 1 � j � l. (9)
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6 BELOSHAPKA

Let ζ ∈ Cn be a new independent variable. Applying X̄ζ̄ to (9) sufficient many times and using
the holomorphic property of α, we can write

∂∂Φj(z, ζ̄)(α(z, w), η̄) = 0, ∀η, ζ ∈ Cn, 1 � j � l. (10)

Substitute z̄ = 0 into (10); we arrive at

∂∂Φj(z, ζ̄)(α(z, u), η̄) = 0. (11)

Let us expand α in a power series with respect to u. Then (11) is decomposed into coefficientwise
relations, which implies that the existence of a nonzero α(z, u) is equivalent to the existence of a
nonzero coefficient a(z) satisfying (11) and, further, to the existence of a homogeneous with respect
to z holomorphic Cn-valued form a(z). We have

∂∂Φj(z, ζ̄)(a(z), η̄) = 0. (12)

This system is equivalent to a system of the form

∂∂Φj(z, ēi1)(a(z), ēi2 ) = 0, (13)

where ei is an element of the standard basis in Cn. If we replace a(z) by a formal unknown A ∈ Cn,
then we obtain a system of linear equations L(Φ)(A) = 0 for A, and the elements of the coefficient
matrix are forms whose degrees are not higher than (l − 1) and which are composed of derivatives
of the forms Φ. As is well kinown, the condition for the existence of a nonzero solution is that the
rank r of the matrix is less than n. In this case, the solution, according to Kramer’s rule, is a set
of determinants of the matrix of order r. This implies that the form A = a(z) we are interested in
is a form of degree not exceeding (l − 1)(n − 1). This completes the proof of the theorem.

Definition. If the coordinate forms of the vector-valued forms Φj are linearly independent
(the finiteness of the type) and if Φ satisfies any of the conditions of Theorem 4 (the holomorphic
nondegeneracy), then we will say that the model surface Q is nondegenerate (in contrast to the
old condition of complete nondegeneracy). If a germ Mξ of a manifold M is subordinate to a
nondegenerate surface Q, then we will say that the manifold M is nondegenerate at the point ξ.

Asertions 1 and 4 imply the following corollary.

Corollary 5. The Lie algebra aut Q of automorphisms of a model surface Q is finite-dimen-
sional if and only if Q is nondegenerate.

Proof. If Q is nondegenerate, then it follows from Theorems 1 and 4 that Q is minimal and
holomorphically nondegenerate, i.e., is finite-dimensional. If any of these conditions is violated,
then we immediately obtain an infinite-dimensional group of automorphisms. This completes the
proof of the corollary.

Theorem 6. Let two germs of the form (1) Mξ and M̃ξ̃ be holomorphically equivalent. Then

(a) the linear space aut0 Q parametrizes the family of mappings of the first germ to the other ;

(b) if Q is nondegenerate, then this family has a dimension not exceeding dimaut0 Q and, in
particular,

dim autξMξ � dim aut0 Q0 < ∞.

Proof. It follows from the considerations carried out in the proof of Proposition 2 that ev-
ery mapping of the germ Mξ into M̃ξ̃ can be presented as the composition of two mappings,
namely, a mapping of the form

z → z + f2 + · · · , wj → wj + g
mj+1
j + · · · (14)
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and
z → C z, wj → ρj wj .

It is sufficient to prove the theorem for the first mapping, which does not change the equations
of the tangent model surface Q, i.e., assuming that Φ̃ = Φ. Substitute (14) into relations (5).
Separating the (m1+μ)th weight component in the first of these relations and the (m2+μ)th weight
component in the second relation, and so on, we obtain for every μ = 1, 2, . . . and j = 1, . . . , l a
relationship of the form

Re (i g
mj+μ
j (z, w) + 2 Φ(f1+μ(z, w), z̄)) + · · · = 0, where wj = uj + i Φj(z, z̄) (15)

and the dots stand for the sum of expressions depending on (f1+ν , g
mj+ν
j ) for with ν < μ. For a cho-

sen Φ, relation (15) can be used for a recursive computation of the successive families (f1+μ, g
mj+μ
j )

consisting of components of the mapping. At every step of this calculation, to determine the next
family, one must solve an algebraic system of linear equations whose right part is calculated at
the previous step. The solution of the nonhomogeneous system of linear equations is uniquely de-
termined up to a choice of a solution of a homogeneous system. By Proposition 3, part (e), the
space of solutions of a homogeneous system coincides with aut Q0. This completes the proof of the
theorem.

This consideration (the Poincaré construction, see [12]), which was applied in CR-geometry
many times, is a version of the implicit mapping theorem for formal power series. Part (b) of the
assertion thus obtained shows one of the main properties of model surfaces. A model surface is
the most symmetric one in the class of germs of given type subordinated to the surface. Although
the inequality proved above is not strict, in all known cases, the coincidence of dimensions means
that the germ is equivalent to Q. Apparently, this holds also in the situation in question; however,
the proof needs additional considerations.

All completely nondegenerate model surfaces Q are holomorphically homogeneous, i.e., the origin
can be transferred by a holomorphic automorphism of Q to any other point of Q. Moreover, this
automorphism is triangular-polynomial. Consider the problem of holomorphic homogeneity of a
nondegenerate model surface which, generally speaking, is not completely nondegenerate. If the
model surface Q, which is of the type m at the origin, is homogeneous, then it must have the same
type also at all other points. For a model surface Q, this condition turns out to be also sufficient.

Theorem 7.
(a) A model surface Q is holomorphically homogeneous if and only if t has a constant type at all

points.
(b) In this case, the holomorphic homogeneity is ensured by the action of the subgroup G− of

Aut Q, consisting of triangular-polynomial mappings of degree less than l generated by G−.

(c) G−, as a Lie algebra, is generated by G−1, i.e., it is Tanaka fundamental.

(d) Here G− admits the structure of a CR-manifold equivalent to Q.

Proof. Let us re-expand the homogeneous forms Φj(z, z̄) defining Q at a point a ∈ Cn. We
obtain

Φj(z + a, z̄ + ā) = Φj(z, z̄) + dΦj(z, z̄)(a) +
1

2!
d2Φj(z, z̄)(a, a) + · · ·

Note that the second summand on the right-hand side has weight (= degree) equal to (mj − 1),
that of the third one is (mj − 2) etc. If, for some J in this relation, there is at least one summand
not reducible to zero in accordance with the process described in [2], then this means that the
multiplicity of a Hörmander number mj with j < J has been increased. Thus, if the type is
preserved, then all terms, starting from the second one, are reduced to zero, and this, in turn,
means the presence of a triangular-polynomial mapping of Q into itself and moving the point a to
the origin. This proves (a) and (b). Note that here that a mapping h from Cn to G− arises, which
assigns to a point a a triangular-polynomial automorphism ha of Q such that ha(0) = a. Using
this correspondence, we can readily define a base family of vector fields in G−1 that generate the
distribution of complex tangents at every point of Q. Further, in accordance with the definition of
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8 BELOSHAPKA

the Bloom–Graham type, these fields generate a Lie algebra, which thus turns out to be Tanaka
fundamental [13]. After this, Q is identified with the standard model of the fundamental graded
Lie algebra G−. This proves (c) and (d) and completes the proof of the theorem.

Taking into account the nontriviality of G0, the polynomiality of the vector fields forming autQ,
and also using a technique going back to Kaup ([14, 15]), we obtain the following theorem.

Theorem 8. The group of holomorphic automorphisms AutQ of a nondegenerate model surface
is a finite-dimensional Lie subgroup of the group of birational automorphisms CN (Cremona group)
of bounded degree. A uniform bound for the degree is a constant D = D(n,K) depending on the
CR-dimension and codimension.

Using this result, we can show, as was done in [16], that Aut Q has the structure of a Lie group.
As was noted in the introduction, if Q is completely nondegenerate, then G+ = 0. If Q is only

nondegenerate, then the problem of estimating d (the index of the highest nonzero component of
G+) for a fixed type m is open. If such an estimate will be obtained, then, from this bound for d
and from the Kaup construction, a bound for D(n,K) (the degree of birational automorphisms of
Q) would readily be obtained. The existing data enable us to formulate the following conjecture.

Conjecture. If a model surface Q is nondegenerate, then Gj = 0 for every j > l. In other words,
the length of G+ does not exceed that of G−.
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