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Abstract. In the paper, we study model surfaces with Hörmander numbers (2, 3) without
satisfying the condition of complete nondegeneracy. Simple criteria are given for the finiteness
of the type, holomorphic nondegeneracy, and holomorphic homogeneity. It is proved that the
dimension of the automorphism group of the model surface is maximal in the class of germs
subordinated to the surface, and also that this group is a Lie subgroup of the Cremona group.
We consider the case of a surface with a unique Hörmander number 3 separately.
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Bloom and Graham [1] introduced the type of a germ of CR-varieties, and also the equivalence
of two definitions of the type was proved (the geometric and coordinate ones). In the geometric
definition, the type was associated with properties of the distribution of complex tangents, and,
in coordinate one, with the form of equations defining the germ. In the coordinate definition, the
type of germ coincides with the type of a quasihomogeneous surface which is given by the lower
weight components of the germ equations. This surface is a canonical representative of germs of
this type i.e., a model surface whose properties determine the properties of the germ in many
respects. The model surfaces with a single Hörmander number m1 = 2 of arbitrary multiplicity k1

has been studied in a sufficiently detailed way. In the paper [2], completely nondegenerate model
surfaces were described and studied. These are model surfaces corresponding to germs of arbitrary
CR-dimensions and codimensions of general position. In particular, if the type of a surface of CR-
dimension n are two Hörmander numbers, m1 = 2 of multiplicity k1 and m2 = 3 of multiplicity k2,
then, provided that the condition of complete nondegeneracy is satisfied, the equation k2 = n2 and
the inequality

k3 6 n2 (n + 1)

must hold. Completely nondegenerate model surfaces of the type ((2, k1), (3, k2)) were considered
in [3] and [4].

In this paper, the technique of model surfaces is applied to the study of CR-manifolds of type
((2, k), (3,K)), which, are not completely nondegenerate in the case of k < n2.

Let the coordinates in a complex space CN be divided into three groups,

z = (z1, . . . , zn), w = (w1, . . . , wk), W = (W1, . . . , WK),
w = u + i v, W = U + i V ;

let the weight 1 be assigned to the variable z, the weight 2 be assigned to the variable w, and the
weight 3 be assigned to the variable W . A germ Mξ of type

((2, k), (3,K)) = (2, . . . , 2, 3, . . . , 3)

(k twos and K threes) is a germ given in some coordinates with the origin at the point ξ by
equations of the form

v = θ(z, z̄) + o(2), V = Θ(z, z̄) + o(3)
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where θ is a real vector-valued form which is homogeneous of degree 2, Θ is a real vector-valued
form which is homogeneous of degree 3, and both the forms do not contain pluriharmonic terms,
and o(j) stands for the sum of summands depending on (z, z̄, u, U) of the weights exceeding j. The
condition of absence of pluriharmonic terms enables us to represent these forms as follows:

θ(z, z̄) = Φ(z, z̄), Θ(z, z̄) = 2 Re Ψ(z, z, z̄) = Ψ(z, z, z̄) + Ψ̄(z̄, z̄, z)

where Φ(z, z̄) is a vector-valued Hermitian form and Ψ(z, z, z̄) is a form of bidegree (2, 1) which is
multilinear and symmetric with respect to the first two arguments.

The Hermitian Rk-valued form Φ(z, z̄), in the developed form, is

Φ(z, z̄) = (ϕ1 z · z̄, . . . , ϕk z · z̄),

where z · ζ̄ stands for the standard Hermitian inner product in Cn, i.e.,

z · ζ̄ = z1 · ζ̄1 + · · ·+ zn · ζ̄n,

and ϕj z · z̄ is a j-th scalar Hermitian form. Further, the CK-valued form Ψ(z, z, z̄) is

Ψ(z, z, z̄) = ψ(z, z) · z̄ = (ψ1(z, z) · z̄, . . . , ψK(z, z̄) · z̄),

where ψj(z, z) stands for a Cn-valued quadratic form on Cn.
Then the tangent model surface to the germ Mξ is the surface Q given by the equations

v = Φ(z, z̄)

V = Ψ(z, z, z̄) + Ψ̄(z̄, z̄, z)
(1)

We say here that the germs given by equations of the form

v = Φ(z, z̄) + o(2)

V = Ψ(z, z, z̄) + Ψ̄(z̄, z̄, z) + o(3)

are the germs subordinated to the model surface Q. It is clear that here the tangent space at the
origin is {v = 0, V = 0}, and its complex part is {w = 0, W = 0}. That is, the CR-dimension is
equal to n and z is the coordinate parametrizing the complex tangent.

Proposition 1.
(a) The germ of the generating CR-manifold M at the point ξ and its tangent model surface Q

at the origin coordinates have the type ((2, k), (3, K)) if and only if the coordinates of the Hermitian
form

Φ(z, z̄) = (Φ1(z, z̄), . . . , Φk(z, z̄))

are really linearly independent and the coordinates of the trilinear form

Ψ(z, z, z̄) = (Ψ1(z, z, z̄), . . . , ΨK(z, z, z̄))

are really linearly independent.
(b) If the condition of linear independence in (a) is not satisfied, then Q has infinite type and is

not minimal at the origin.

Proof. Part (a) follows from Corollary 8.3 of [1], and (b) is obvious.
Since the real dimension of the space of Hermitian forms on a space of dimension n is equal to

n2, and the real dimension of the space of forms represented by 2Re Ψ(z, z, z̄) is equal to n2 (n+1),
it follows that the condition of linear independence implies the necessity of the validity of the
inequalities

k 6 n2, K 6 n2 (n + 1).
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Suppose that two germs Mξ and M̃ξ̃ are holomorphically equivalent. The germ type is a holomor-
phic invariant, and therefore their types coincide. Let their common type be equal to ((2, k), (3,K)),
let the surfaces Q and Q̃ be their tangent model surfaces, each of which is given by a pair of forms
(Φ, Ψ) and (Φ̃, Ψ̃). Let, further,

(z → f(z, w, W ), w → g(z, w, W ), W → G(z, w,W ))

be an invertible mapping holomorphic in a neighborhood of the origin is an which takes Mξ to M̃ξ̃

and preserves the origin. In what follows, we shall use expansions of the form

f(z, w, W ) =
∞∑
1

fj(z, w, W ),

where fj stands for the j-th weighted component of the expansion of f .

Proposition 2.
(a) The lower terms of the mapping are of the form

f(z, w,W ) = C z + o(1),

g(z, w,W ) = ρ w + o(2),

G(z, w,W ) = P W + o(3),

where C ∈ GL(n,C), ρ ∈ GL(k,R), P ∈ GL(K,R); moreover,

Φ̃(z, z̄) = ρ−1 Φ(Cz, Cz), Ψ̃(z, z, z̄) = P−1 Ψ(Cz, Cz, Cz). (2)

(b) The linear mapping
(z → C z, w → ρw, W → P W )

takes Q onto Q̃, i.e., the model surfaces are holomorphically equivalent if and only if they are
linearly equivalent.

Proof. Let the equations of the germs be

v = Φ(z, z̄) + ϕ(z, z̄, u, U), V = 2 Re Ψ(z, z, z̄) + ψ(z, z̄, u, U)

v = Φ̃(z, z̄) + ϕ̃(z, z̄, u, U), V = 2 Re Ψ̃(z, z, z̄) + ψ̃(z, z̄, u, U)

Then the relations expressing the fact that, if (z, w, W ) ∈ Mξ, then (f, g,G) ∈ M̃ξ̃ are of the form

Im g = Φ̃(f, f̄) + ϕ̃(f, f̄ , Re g, Re G),

Im G = 2Re Ψ̃(f, f, f̄) + ψ̃(f, f̄ , Re g, Re G)

for w = u + i Φ(z, z̄) + ϕ(z, z̄, u), W = U + i 2 ReΨ(z, z, z̄) + ψ(z, z̄, u)

(3)

Separating the components of weights 1 and 2 in the first of the relations and the components
of weights 1,2, and 3 in the other, we obtain (a), which immediately implies (b). This proves the
proposition.

Note that relation (17) defines an action of the direct product of three linear groups

GL(n,C)×GL(k, R)×GL(K, R)
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on the space of pairs of forms (Φ, Ψ) that define model surfaces of this type. By Proposition 2,
every invariants of this action are holomorphic invariants of the germ.

To understand the CR-geometry of a germ, its holomorphic automorphisms are of great impor-
tance. Let aut Mξ be the Lie algebra of infinitesimal automorphisms. It consists of the germs of
real holomorphic vector fields of the form

X = 2 Re
(

α
∂

∂z
+ β

∂

∂w
+ γ

∂

∂W

)
, (4)

where (α, β, γ) are holomorphic in a neighborhood of the point ξ and the filed X is tangent to Mξ

at the points of Mξ. Every field of this kind generates a local one-parameter group of invertible
holomorphic mappings of the germ into itself. The family of mapping generated in this way is a
local group of automorphisms of Mξ; we denote this group by AutMξ. In aut Mξ one can single
out a Lie subalgebra autξ Mξ which consists of the vector fields vanishing at ξ. The fields in this
subalgebra generate local one-parameter groups of holomorphic transformations keeping ξ. These
transformations form a local subgroup Autξ Mξ in Aut Mξ.

The weights (of variables) introduced above enable one to introduce a grading in the Lie algebra
of vector fields of the space CN . To this end, one should extend the agreement concerning the
weights of the variables to the coordinate differentiations by setting

[
∂

∂z

]
= −1,

[
∂

∂w

]
= −2,

[
∂

∂W

]
= −3.

After this, aut Mξ also obtains the structure of a graded Lie algebra, which decomposes into the
direct sum of graded components from the component of the weight (-3) and, generally speaking,
to +∞. The algebra of the model surface Q has some specific features.

Proposition 3.
(a) If a field

X =
+∞∑
−3

Xj

belongs to autQ, then ∀j Xj ∈ aut Q.
(b) aut Q contains a field of weight zero,

X = 2 Re
(

z
∂

∂z
+ 2 w

∂

∂w
+ 3 W

∂

∂W

)

to which the one-parameter subgroup of extensions corresponds,

z → et z, w → e2 t w, W → e3 t W

(c) The subalgebra aut0 Q0 is
G0 + G1 + . . . ,

i.e., the sum of nonnegative weight components of the full algebra. The subalgebra

G− = G−3 + G−2 + G−1

generates the group of holomorphic transformations Q such that the subgroup orbit of the origin
coincides with the orbit of the origin with respect to the full group of automorphisms.

(d) The Lie algebra is finitely graded (only finitely many components are nonzero in the decom-
position into the components) if and only if it is finite-dimensional. In this case, it consists of vector
fields with polynomial coefficients.
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(e) The condition or the fact that the field (4) belongs to aut Mξ is given by the relations

2 Re(i β + 2 Φ(α, z̄)) = 0

2 Re(i γ + 4 Ψ(α, z, z̄) + 2 Ψ̄(z̄, z̄, α)) = 0

for w = u + i Φ̃(z, z̄), W = U + i 2 Re Ψ̃(z, z, z̄)

(5)

Proof. The tangent space to Q is given by the relations

Im(d w) = 2 Re Φ(d z, z̄)

Im(dW ) = 2 Re(2 Ψ(d z, z, z̄) + Ψ̄(z̄, z̄, d z))

which implies (e). This substitution does not change the weights of w and W , and therefore the
linear relations (5) are relations for every graded component of the field Xj that is formed from
homogeneous components of the coefficients, namely, (αj+1, βj+2, γj+3). This proves (a). Parts (b)
and (c) can be verified directly, and part (d) follows from (a). The proposition is proved.

A criterion for the finite-dimensionality of the Lie algebra autMξ of infinitesimal automorphisms
of a germ of finite type is the holomorphic nondegeneracy ([6, 7]). By definition, the holomorphic
degeneracy of Q means the existence of a nonzero holomorphic vector field, i.e., a field of the form

X = α
∂

∂z
+ β

∂

∂w
+ γ

∂

∂W
, (6)

where (α, β, γ) are holomorphic in a neighborhood of the origin and the vector field is tangent to
Q, i.e., satisfies the condition

β = 2 i Φ(α, z̄))

γ = 4 i Ψ(α, z, z̄) + 2 i Ψ̄(z̄, z̄, α))

for w = u + i Φ̃(z, z̄), W = U + i 2 Re Ψ̃(z, z, z̄)

(7)

Note that (α, β, γ) = 0 if and only if α = 0, and the validity of these relations on Q means their
validity in a neighborhood of the origin.

Theorem 4. A necessary and sufficient condition of holomorphic degeneracy of Q is the exis-
tence of a homogeneous holomorphic Cn-valued form on Cn, say, a(z) 6= 0, of degree not exceeding
(n− 1) and such that the following three conditions hold for all (z, ζ, η) in Cn:

(4.i) Φ(ζ, ā(z̄)) = 0, (8)

(4.ii) Ψ(η, ζ, ā(z̄)) = 0, (9)

(4.iii) Ψ̄(ā(z̄), z̄, ζ) = 0 (10)

Proof. Let us choose an α(z, w, W ) holomorphic in a neighborhood of zero. Necessary and
sufficient conditions of the fact that (β, γ) defined by relation (7) on Q are holomorphic in a
neighborhood of the origin are the tangent Cauchy–Riemann equations. Let ζ ∈ Cn be an arbitrary
vector. Then an arbitrary CR-vector field on Q is of the form

X̄ζ̄ = ζ
∂

∂z̄
− 2 i Φ̄(ζ̄, z)

∂

∂w̄
− 2 i (2Ψ̄(ζ̄, z̄, z) + Ψ(z, z, ζ̄))

∂

∂W̄
).

Applying it to relations (7), we obtain two relations,

Φ(α, ζ̄) = 0 (11)

Ψ(α, z, ζ̄) + Ψ̄(z̄, ζ̄, α) = 0 (12)
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Applying X̄η̄ to the second relation, we obtain

Ψ̄(η̄, ζ̄, α) = 0. (13)

It follows now from (11) that
Ψ(α, z, ζ̄) = 0 (14)

Choosing now a nonzero value of α(z, w, W ) satisfying (12), (13), and (14) and substituting
z̄ = 0 into them, we obtain similar relations with α(z, u, U) 6= 0. If we expand α in a power series
in (u,U), then we can obtain a nonzero solution of (14), (12), (13) for α = A(z) 6= 0. Similarly,
decomposing A(z) into a sum of homogeneous forms, we obtain a nonzero solution in the form
of a homogeneous form a(z). The conditions (14) on a(z) form a homogeneous system of linear
equations for the coordinates of the form a(z) whose coefficients are linear in z. As is known, the
presence of a nonzero solution is equivalent to the fact that the rank of this system does not exceed
(n − 1). Moreover, using the Cramer formulas, one can obtain a general solution in the form of
forms of degree not exceeding (n− 1). The remaining two relations (12), (13) are additional linear
relations for the coefficients of the resulting forms, and it is clear that the presence of a solution
with an a(z) 6= 0 of this kind implies the holomorphic degeneracy. This completes the proof of the
theorem.

Propositions 1 and 4 imply the following assertion.

Theorem 5. The group aut Q is finite-dimensional if and only if the following two solutions
on the forms (Φ,Ψ) hold :

(i) The coordinate forms Φ and Ψ are linearly independent.
(ii) The forms satisfy conditions (4.i), (4.2), and (4.iii) (of Theorem 4 ).

Proof. Condition (i) implies the minimality, and condition (ii) implies the holomorphic non-
degeneracy. This implies the finite-dimensionality. If any of these conditions is violated, we imme-
diately obtain an infinite-dimensional group of automorphisms. This completes the proof of the
theorem.

For the case in which Q satisfies both the conditions, (i) and (ii), we shall say that the model
surface Q and the germs subordinated to it are nondegenerate. As was noted above, condition (i)
means that the surface Q and all germs subordinated to it have the type ((2, k), (3,K)). Note also
that conditions (4.i) and (4.ii) are completely analogous to the condition of holomorphic nondegen-
eracy for the quadratic model surface, which is a surface of type (2, k) (see [8]). These conditions
can be formulated as the existence condition for a nonzero constant vector satisfying appropriate
conditions. On the contrary, condition (4.iii) is a condition of another type. Its solutions are nonzero
homogeneous forms of degree not exceeding (n− 1). This is a specific feature of the cubic case as
compared with the quadratic one. In the quadratic case, the holomorphic nondegeneracy is equiv-
alent to the existence of a nonzero tangential holomorphic field having a constant z-coordinate. In
the cubic case, which we are considering here, this field has a non-zero z-coordinate of degree less
than n.

Theorem 6. Let Mξ and M̃ξ̃ be two germs of type ((2, k), (3,K)), i.e., condition (i) holds. Then
(a) the linear space aut0 Q parametrizes the family of mappings of the first germ into another ;
(b) if Q is holomorphically nondegenerate, i.e., condition (ii) holds, then this family is finite-

dimensional and, in particular,

dimautξMξ 6 dimaut0 Q < ∞.

Proof. It follows from the considerations used in the proof of Proposition 2 that every mapping
of one of the germs into another can be decomposed into a composition of two mappings, namely,
mappings of the form

z → z + f2 + . . . , w → w + f3 + . . . , W → W + G4 + . . . (15)
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and
z → C z, w → ρ w, W → P W

Note that the first of these mappings does not modify the forms (Φ,Ψ) determining the tangent
model surface. Write (Φ̃, Ψ̃) = (Φ,Ψ) and substitute (15) into relations (3). Distinguishing the
(µ + 1)-th component in the first of relations (3) and the (µ + 2)-th component in the second of
these relations and singling out the leading terms, we obtain two relations of the form

Re(i gµ+1(z, w, W ) + 2 Φ(fµ(z, w,W ), z̄)) + . . . = 0

Re(iGµ+2(z, w, W ) + 4 Ψ(fµ(z, w,W ), z, z̄) + 2 Ψ̄(z̄, z̄, fµ(z, w, W ))) + . . . = 0

where w = u + i Φ̃(z, z̄), W = U + i 2Re Ψ̃(z, z, z̄)

(16)

and the dots stand for the sum of expressions depending on (fν , gν+1, Gν+2) for ν < µ. For
chosen (ϕ,ψ, ϕ̃, ψ̃), relation (16) can be used for the recurrent calculation of successive families
(fµ, gµ+1, Gµ+2) formed by the components of the mapping. At each step of this calculation, to de-
termine the next triple, we must solve the algebraic system of linear equations whose right-hand side
was computed at the previous step. The solution of the inhomogeneous system of linear equations
is determined uniquely up to the choice of solutions of the homogeneous system. By Proposition 3,
part (d), the solution space of the homogeneous system is contained in aut0 Q. This completes the
proof of the theorem.

This reasoning (the Poincaré construction, see [9]), which was used many times in CR-geometry,
is a a certain version of the implicit mapping theorem for formal power series. Part (b) of the
assertion proved above demonstrates one of the main properties of model surfaces. A model surface
is the most symmetrical in the class of germs of the given type that are subordinate to the surface.
Although the inequality is not strict, in all known situations, the coincidence of dimensions means
that the germ is equivalent to Q. This seems to be true in this situation as well, but the proof
requires additional reasonings.

All completely nondegenerate model surfaces are Q-holomorphically homogeneous, i.e., the origin
can be transferred by a holomorphic automorphism of Q to any other point of Q. Consider the
question concerning the holomorphic homogeneity of a model surface of type ((2, k), (3,K)), which,
generally speaking, are not completely nondegenerate. If the model surface Q, which is of the type
((2, k), (3,K)), is homogeneous, then it must be of the same type also at all other points. For the
model surface Q, this condition turns out to be also sufficient.

LetH be the space of Hermitian forms on Cn, letHΦ be the subspace generated by the coordinate
forms Φ(z, z̄), let H′Φ be a direct complement, i.e., H = HΦ + H′Φ, and let ΠΦ be the projection
onto H′Φ along HΦ.

Theorem 7.
(a) The Lie subalgebra G− = G−3 + G−2 + G−1 of the Lie algebra autQ has the following form:

a
∂

∂z
+ (b + 2 i Φ(z, ā))

∂

∂w
+ (B + 2 i Ψ(z, z, ā) + δ′(w, a) + δ′′(w, ā))

∂

∂W

where ΠΦ(Re Ψ(a, z, z̄)) = 0 and the parameters δ′ and δ′′ are defined uniquely from (19).
(b) The orbit of the origin, for the group Aut Q0 of holomorphic automorphisms of the germ of

the surface Q at the origin, Orb0, is the family of points ξ = (a, b, B) ∈ Q such that

Orb0 = {(a, b, B) ∈ Q : ΠΦ(Re;Ψ(a, z, z̄)) = 0, ∀z}.

(c) The subalgebra G0 is the Lie algebra of the group G0, which is the subgroup of the group
GL(n,C)×GL(k, R)×GL(K, R) given by the relation

Φ(z, z̄) = ρ−1 Φ(Cz, Cz), Ψ(z, z, z̄) = P−1 Ψ(Cz, Cz, Cz). (17)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 25 No. 2 2018



CUBIC MODEL CR-MANIFOLDS 155

(d) The group G− generated by G− = G−3 + G−2 + G−1 is the Lie group consisting of the
triangular-quadratic transformations of CN .

Proof. As was noted above, the coordinates of a field of weight j in aut Q are of the form
(fj+1, gj+2, Gj+3) and satisfy relations (5).

For j = −3, we obtain X−3 = (0, 0, B), where B ∈ RK is a constant real vector. For j = −2,
we obtain X−2 = (0, b, Az), where b ∈ Rk is a constant real vector, and Az = 0. For j = −1, we
obtain X−1 = (a, β z, γ(z, z) + δ(w)), where a ∈ Cn is a constant vector. it follows from the first
relation of (5) that βz = 2 i Φ(z, ā). It follows from the second relation that γ(z, z) = 2 i Ψ(z, z, ā),
and also that the following relation holds:

δ(Φ(z, z̄)) = 4 ReΨ(a, z, z̄). (18)

The criterion for the solvability of relation (18) with respect to δ is the condition

ΠΦ(Re Ψ(a, z, z̄)) = 0.

If this condition holds, then, since the coordinate forms of Φ are linearly independent, it follows
that the linear operator δ can be recovered uniquely. Here the dependence of the solution on a is
real, and we can write δ(w) = δ′(w, a) + δ′′(w, ā), where

δ′(Φ(z, z̄), a) = 2 Ψ(z, z̄, a)δ′′(Φ(z, z̄), ā) = 2 Ψ̄(z, z̄, ā) (19)

This proves (a).
Let a point ξ = (a, b, B) ∈ Q be such that that the germ Qξ is equivalent to Q0. Let us transfer

the origin to this point by the change

z → a + z, w → b + w, W → c + W.

In the new coordinates, the equations Q become

Im(w + b) = Φ(z + a, z̄ + ā),

Im(W + B) = 2Re Ψ(z + a, z + a, z̄ + ā).

The last equations can be reduced by simple triangular-quadratic changes to the form

v = Φ(z, z̄),

V = 2 Re(2Ψ(z, a, z̄) + Ψ(z, z, z̄)).
(20)

If for at least one a and one of the coordinate forms, the Hermitian form 2 Re (Ψj(z, a, z̄)) is not
contained in H, then this changes the type at the corresponding point. Indeed (see Corollary 8.3
of [1]), this increases the multiplicity of the number 2 and, accordingly, reduces the multiplicity
of the number 3. If, however, for all coordinates, identically with respect to a, these forms are
contained in H, then by adding a linear term dependent on w to W , we reduce equations (20) to
the original form (1). This proves parts (b) and (d). Part (c) follows from Part (b) of Proposition 2.
This completes the proof of the theorem.

Theorem 8.
(a) A surface Q is holomorphically homogeneous if and only if its type does not depend on a

point.
(b) A surface Q is holomorphically homogeneous if and only if ΠΦ(4 Re Ψ(a, z, z̄)) = 0 for all

a ∈ Cn. In this case, Q can naturally be identified with G−.

Proof. Let the type does not depend on a point; then, as was proved in the proof of Theorem 7,
the condition of part (b) holds and Q is homogeneous. This completes the proof of the theorem.

We note that for a completely nondegenerate surface with the Hörmander numbers (2.3), the
homogeneity condition in Theorem 7 is satisfied automatically, since, in this case, the space H
coincides with the entire space of Hermitian forms.

Taking into account the structure of G− (Theorem 7, part (d)) and the polynomial property
of the vector fields forming aut Q (Proposition 3 (d)) and using a technique that goes back to
Kaup [10] and applied in a similar situation by Tumanov [11], we obtain the following assertion.
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Theorem 9. The group of holomorphic automorphisms of a cubic which is nondegenerate in
the sense of satisfying requirements (i) and (ii) is a finite-dimensional Lie subgroup of the group of
birational automorphisms CN of bounded degree. Uniform estimation for the degree is given by the
constant D = D(n, k,K).

As noted above, the quadratic model surfaces (with a unique Hörmander number equal to 2)
are formally a special case of the type ((2, k), (3, K)) under consideration for K = 0. On the other
hand, setting k = 0, we obtain the second extremal case, i.e., a surface Q of type (3,K) with a
single Hörmander number equal to 3 (a cubic model surface). In this case, the coordinates of the
space are divided into two groups of variables, z and W , the group of the variables w disappears,
as well as the Hermitian form Φ:

V = Ψ(z, z, z̄) + Ψ̄(z̄, z̄, z) (21)

How the eight statements obtained above will be realized in this case?
The answer is as follows: all statements from the 1st to the 6th inclusive are edited in an obvious

way: one should remove w and Φ.
The argument in Theorem 7 shows that a cubic model surface can be homogeneous if and only if

Ψ = 0. However, this is an infinite type. That is, a surface of type (3,K)) cannot be homogeneous.
However, one can extract a more subtle information from this reasoning. Namely, we obtain the
following analog of Theorems 7 and 8.

Proposition 10.
(a) The orbit of the origin with respect to the group AutQ0 of holomorphic automorphisms of

the surface Q is the family of points

Orb0 = {(a,B) ∈ Q : 2 Re Ψ(z, a, z̄) = 0, ∀z},
(b) The subgroup G− of the group of automorphisms that corresponds to G−3+G−2+G−1 consists

of triangular-quadratic transformations of CN .
(c) G− can naturally be identified with Orb0 ⊂ Q.
(d) The group AutQ0 of holomorphic automorphisms of a cubic nondegenerate in the sense of the

validity of requirements (i) and (ii) is a finite-dimensional Lie subgroup of the group of birational
automorphisms of CN of bounded degree.

Let us return to the general case of the type ((2, k), (3,K)). There are questions that remained
outside the scope of our study. Denote by G+ the Lie subalgebra of aut Q0 generated by fields of
positive weight. The nondegeneracy conditions (i) and (ii) ensure that G+ is finite-dimensional and
consists of a finitely many graded summands, i.e.,

G+ = G1 + · · ·+ Gd.

The question concerning the bound for d remains open.
If Q is completely nondegenerate, then, as was proved by Gammel and Kossovski [4], G+ = 0. If

we reject the condition of complete nondegeneracy, then this is not the case.

Example 11. Let a model surface Q in C4 with the coordinates

(z1 , z2, w = u + i v, W = U + i V ),

of type ((2, 1), (3, 1)), be given by the equations

v = |z1|2, V = 2 Rez2
2 z̄2.

This is a direct product of two hypersurfaces: a sphere Q1 in C2, whose automorphisms are well
known, and a cubic hypersurface Q2 in C2 with a degeneracy at the origin (this example was con-
sidered in [12]). The algebra of the hypersurface Q2 contains no fields of positive weight. However,
the algebra of automorphisms of Q is the direct sum of the algebras Q1 and Q2. Since the algebra
of the sphere contains fields of weights 1 and 2, it follows that this is also true for the algebra Q.
That is, in this case, d = 2.
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