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Introduction
The complexity of analytic functions of several variables has been studied in [1–5]. A method

of measuring the complexity of an analytic function in two variables, possibly multivalued, is
proposed in [3]. For any analytic function of two variables z(x, y) one can define its complexity
N(z). It attains values 0, 1, . . . ,∞ and is preserved under any analytic continuation. Functions
of one variable have complexity N(z) = 0. Complexity one have functions z(x, y) of two variables
if they have the form z = c(a(x) + b(y)), where a, b, c are nonconstant functions of one variable,
and so on. In other words, for a function z of two variables we write N(z) = n if z can be
represented in the form C(A(x, y) + B(x, y)), where C is a function of one variable, and the
complexity of A and B is less than n, and there is no such representation with a smaller value
of n. This produces an increasing system of classes of functions

Cl0 ⊂ Cl1 ⊂ Cl2 . . . .

If a function does not belong to any of these classes we write N(z) = ∞. Each of the above
classes is defined by differential-algebraic relations. For example, Cl0 is defined by the condition
z′x z′y = 0, and Cl1 by the condition

δ(z) = z′xz
′
y(z

′′′
xxyz

′′
y − z′′′xyyz

′
x) + z′′xy((z

′
x)

2z′′yy − (z′y)
2z′′xx) = 0. (1)

The differential polynomial δ(z) is the numerator of the expression (ln(z′y/z
′
x))

′′
xy.

1. Linear equations with constant coefficients
Consider the pair of functions (z1 = eax+by, z2 = epx+qy). If ab = pq = 0 then

max(N(z1), N(z2)) = 0. If it is not so, then max(N(z1), N(z2)) = 1. What condition on
(a, b, p, q) provides that the complexity of all linear combinations of z1 and z2 does not exceed
one? The answer gives
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Lemma 1. Let (ab, pq) ̸= 0. The complexity of all linear combinations of z1 and z2 does not
exceed 1 only in three cases (1) p = a, (2) q = b, (3) aq = bp.

Proof. The condition (1) for z = t1z1 + t2z2 has the form

(b− q) (a− p) (qa− bp)
((

eax+by
)2

abt2
2 −

(
epx+qy

)2
pqt1

2
)
eax+byepx+qy t1 t2 = 0.

So the lemma is proved. 2

There is a curious corollary from this lemma. Consider a homogeneous linear equation with
constant coefficients P (D)(z(x, y)) = 0 and let L be the space of its analytic solutions. The
complexity N(L) of the space of solutions L is the maximum (finite or infinite) of the solutions’
complexities.

Theorem 2. If N(L)6 1, then the equation P (D)(z(x, y)) = 0 has one of the forms:
(1) z′x −Az = 0, solutions have the form z = eAx b(y),
(2) z′y −Bz = 0, solutions have the form z = eBy a(x),
(3) kz′x + lz′y = 0, solutions have the form z = c(lx− ky),
(4) z′′xy = 0, solutions have the form z = a(x) + b(y).

Proof. Let χ = {P (λ1, λ2) = 0} be the characteristic set of this equation and let (z1 =
eax+by, z2 = epx+qy) be two solutions, i.е. (a, b), (p, q) ∈ χ. It follows from Lmma 1 that
χ belongs to a vertical line (case (1)) or to a horizontal line (case (2)), or to a line passing
through the origin (case (3)). There is another case (case (4)) outside Lemma 1. In this case
χ is the coordinate cross and N(z1) = N(z2) = 0. The characteristic polynomials have one of
the forms: in case (1) P (λ1, λ2) = (λ1 − A)n1 , in case (2) P (λ1, λ2) = (λ2 − B)n2 , in case (3)
P (λ1, λ2) = (kλ1+ lλ2)

n3 , in case (4) P (λ1, λ2) = (λ1λ2)
n4 . In all cases it is not difficult to solve

these differential equations. The condition N(L)6 1 is true only for n1 = n2 = n3 = n4 = 1.
The theorem is proved. 2

Note that if the multiplicities (n1, n2 n3, n4) are arbitrary, then the complexities of the space
of solutions are finite but greater than one.

2. L-pairs
A collection of functions forms a linear space if this collection is closed under addition and

multiplication by a constant (complex numbers). Multiplication by a nonzero constant does not
change the complexity of a function: N(λz(x, y)) = N(z(x, y)). This means that a nonzero
function of complexity 1 generates a linear space lying in Cl1. As for a sum of two functions,
if N(z1(x, y)) and N(z2(x, y)) do not exceed n then N(z1(x, y) + z2(x, y)) 6 (n + 1). It can be
shown that in ‘general position’ this inequality becomes the equality. There is a simple example:
N(xy) = 1, N(x2) = 0, then N(xy + x2) = 2. But there exist exceptional pairs. For example
N(xy) = 1, N(x+ y) = 1 and N(t1(xy) + t2(x+ y)) = 1 for any (t1, t2).

Definition. We call a pair of functions (z1(x, y), z2(x, y) an L-pair of complexity n if

N(t1(z1(x, y) + t2z2(x, y)) 6 max(N(z1), N(z2)) = n for any (t1, t2).

Here we assume that z1 and z2 have analytic germs at the same point. Lemma 1 then becomes
a classification of L-pairs of a special form.

Let us formulate several obvious statements.

Statement 3. Two functions (z1, z2) is an L-pair of complexity zero if and only if they are
functions of the same argument x or y.
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Statement 4. The property of being an L-pair is invariant under the action of
(1) the pseudo-group of transformations {(x → p(x), y → q(y))},
(2) the change {(x → y, y → x)},
(3) the affine group of transformations of (z1, z2)-plane.

The pseudo-group generated by the transformations (1), (2) and (3) we denote by G. The
description of L-pairs is natural to give up to the G-action.

Now let us turn back to Lemma 1. If we assume only that N(z1 + z2) 6 1, we have the same
description. Indeed, the condition (1) for z = z1 + z2 has the form

(b− q) (a− p) (qa− bp)
((

eax+by
)2

ab−
(
epx+qy

)2
pq
)
eax+byepx+qy = 0,

and it is enough to reach the conclusion of Lemma 1. Taking this into account we modify the
definition.

Definition. We call a pair (z1(x, y), z2(x, y)) a pair of complexity n, if N(z1(x, y)+ z2(x, y)) 6
max(N(z1), N(z2)) = n.

We can strengthen Lemma 1 as follows.

Lemma 1’. Let (ab, pq) ̸= 0. The pair (z1 = eax+by, z2 = epx+qy) is a pair of complexity one
only in three cases (1) p = a, (2) q = b, (3) aq = bp.

Now we turn to the construction of an arbitrary L-pair. Their description is given in the
form of a list of cases that are specified and denoted in the course of exposition.

Let z1 and z2 be two functions of complexity not exceeding 1, that is z1 = c1(a1(x) + b1(y)),
z2 = c2(a2(x) + b2(y)). Assume also that max(N(z1), N(z2)) = 1, i.e one of the functions has
complexity one, let it be z2. Then a2, b2, and r are non constant and locally invertible at a
general point. Replace x by a−1

2 (x) and y by b−1
2 (y). The condition takes the form

c(a(x) + b(y)) + t · r(x+ y) ∈ Cl1 ∀t, r′ ̸= 0. (2)

Let the first term have complexity zero, this is Case (01). Then the first term is a function of
one variable, denote it by a(x). From (1) for a(x) + t · r(x+ y) we get

a1r1r3 = 2 a1r2
2 − a2r1r2,

r1r3 = r2
2.

By lower indices we denote orders of derivatives. If r2 = 0 then r(x + y) = k · (x + y) + l and
a(x) is arbitrary. This is Case (01.1). This pair is equivalent to (a(x), (x+ y)).
If r2 is not zero then from the second equation we have r(t) = ρ · emt + ρ̃. And from the first
equation we have a(x) = α·emt+α̃. This pair is equivalent to (kx, xy). We call this Case (01.2)

Consider now Case (11) when both terms have complexity one. This means that a′, b′, c′, r′
are nonconstant functions. From (1) for c(a(x) + b(y)) + t · r(x+ y) we get

a1
2b1c3r1

2 − a1b1
2c3r1

2 − a1
2c2r1r2 − a1b2c2r1

2 + a2b1c2r1
2 +

+b1
2c2r1r2 − a1c1r1r3 + 2 a1c1r2

2 − a2c1r1r2 + b1c1r1r3 − 2 b1c1r2
2 + b2c1r1r2 = 0,

−a31b1c1c3r1
2 − a1

3b1c2
2r1

2 − a1b1
3c1c3r1

2 + a1b1
3c2

2r1
2 − 2 a1

2b2c1c2r1
2 + 2 a2b1

2c1c2r1
2 −

−a1
2c1

2r1r3 + a1
2c1

2r2
2 + 2 a1b2c1

2r1r2 − 2 a2b1c1
2r1r2 + b1

2c1
2r1r3 − b1

2c1
2r2

2 = 0, (3)

a1
3b1

2c1c3r1 − 2 a1
3b1

2c2
2r1 − a1

2b1
3c1c3r1 + 2 a1

2b1
3c2

2r1 + a1
3b1c1c2r2 − a1

3b2c1c2r1 −
−a1b1

3c1c2r2 + a2b1
3c1c2r1 − a1

2b1c1
2r3 + a1

2b2c1
2r2 + a1b1

2c1
2r3 − a2b1

2c1
2r2 = 0.
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Eliminating c3 from the first and second equations and then from the first and third equations,
we get two equations. Each of them is a quadratic form in (c1, c2) with a common factor
a1b1r1 (a1 − b1)

2. In our case this factor can be equal to zero only if a1 − b1 = 0 (Case (11.1)).
This pair has the form (c(x+ y), r(x+ y)).
Assume now a1 − b1 ̸= 0. After dividing by the common factor we get

a1
2b1c2

2r1
2 + a1b1

2c2
2r1

2 − a1
2c1c2r1r2 − 2 a1b1c1c2r1r2 + a1b2c1c2r1

2+

+a2b1c1c2r1
2 − b1

2c1c2r1r2 + a1c1
2r2

2 − a2c1
2r1r2 + b1c1

2r2
2 − b2c1

2r1r2 = 0,

2a1
2b1

2c2
2r1

2 − 2a1
2b1c1c2r1r2 + a1

2b2c1c2r1
2 − 2a1b1

2c1c2r1r2+

+a22b1
2c1c2r1

2 + 4a1b1c1
2r2

2 − 2a1b2c1
2r1r2 − 2a2b1c1

2r1r2 = 0.

(4)

After elimination of c2/c1 we have

(a1 − b1)
3
a1b1r1

6a2b2r2
(
a1

2b1r2 − a1
2b2r1 − a1b1

2r2 + a2b1
2r1
)
= 0. (5)

Consider all the possibilities separately.

Case (11.2). One of the functions a′′ = 0 and b′′ = 0 is linear, let it be b, then b(y) = k ·y+ l,
where k ̸= 0. Replace k · y + l by y and k · x− l by x, then r(t) becomes r(t/k). The condition
(1) for c(a(x) + y) + t · r(x+ y) takes the form

a1
3c1c2r2 + a1

3c1c3r1 − 2 a1
3c2

2r1 − a1
2c1

2r3 − a1
2c1c3r1 +

2 a1
2c2

2r1 + a1c1
2r3 − a1c1c2r2 − a2c1

2r2 + a2c1c2r1 = 0,

a1
3c1c3r1

2 − a1
3c2

2r1
2 − a1

2c1
2r1r3 + a1

2c1
2r2

2 − a1c1c3r1
2 +

a1c2
2r1

2 − 2 a2c1
2r1r2 + 2 a2c1c2r1

2 + c1
2r1r3 − c1

2r2
2 = 0,

−a1
2c2r1r2 + a1

2c3r1
2 − a1c1r1r3 + 2 a1c1r2

2 − a1c3r1
2 −

a2c1r1r2 + a2c2r1
2 + c1r1r3 − 2 c1r2

2 + c2r1r2 = 0.

The expressions for c3 from each of these equations are fractions with the denominators

a1
2c1r1 (a1 − 1) , a1c1r1

2
(
a1

2 − 1
)
, a1r1

2 (a1 − 1) .

There are two possibilities for vanishing of one of the denominators: a1 = 1 or a1 = −1. In our
case a1 ̸= b1, hence we have only the second possibility a1 = −1, a(x) = −x+ α. The condition
(1) yields

−c1
2r3 − c1c3r1 + 2 c2

2r1 = 0,

c1r1r3 − 2 c1r2
2 + c3r1

2 = 0,

where c and r are functions of two independent variables x− y and x+ y.
Separating the variables and solving the differential equations we arrive at Case (11.2.1) :
c(−x+ y) = γem(−x+y) + γ̃, r(x+ y) = ρe±m(x+y) + ρ̃. The pair then has the form (y/x, xy).

If a1 ̸= ±1, we can eliminate c3 from (5) to get two quadratic form in (c1, c2):

(c2r1 − c1r2)
(
c2a1

3r1 + c2a1
2r1 − c1a1

2r2 − c1a1r2 + a2r1
)
= 0,

(c2r1 − c1r2)
(
2 c2a1

2r1 − 2 c1a1r2 + c1a2r1
)
= 0

with the common factor (c2r1 − r2c1). If this factor is equal to zero (Case (11.2.2)), then
we can separate the variables and, taking into account that the Jacobian of the change (t =
a(x) + y; s = x + y) does not vanish, we see that both logarithmic derivatives are equal to the
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same constant m. From this we get z1 = γem(a(x)+y) + γ̃, z2 = ρem(x+y) + ρ̃ . The pair has
the form (a(x)y, xy).

Otherwise, (Case (11.2.3)), dividing out the common factor and eliminating c2/c1 from two
linear forms, we get a1

2a2r1
2 (a1 − 1) = 0. It vanishes only if a2 = 0, a1 is then the constant A.

In this case Ac2/c1 = r2/r1, and z1 = c(Ax+ y) = γe
m
A (Ax+y), z2 = r(x+ y) = ρem(x+y). The

pair has the form (xky, xy)
We see that Cases (11.2.1) and (11.2.3) are subcases of Case (11.2.2). Thus, in Case (11.2) the
pair has the form (a(x)y, xy).

In Case (11.3) r2 = 0, i.e. r(x+ y) = ρ(x+ y)+ ρ̃, where ρ ̸= 0. By replacing x with ρx+ ρ̃
and y with ρy we obtain r(x+ y) = x+ y. The condition (1) for c(a(x) + b(y)) + (x+ y) has the
form

a1
3b1

2c1c3 − 2 a1
3b1

2c2
2 − a1

2b1
3c1c3 + 2 a1

2b1
3c2

2 − a1
3b2c1c2 + a2b1

3c1c2 = 0,

a1
3b1c1c3 − a1

3b1c2
2 − a1b1

3c1c3 + a1b1
3c2

2 − 2 a1
2b2c1c2 + 2 a2b1

2c1c2 = 0,

a1
2b1c3 − a1b1

2c3 − a1b2c2 + a2b1c2 = 0.

By eliminating c3 and c2/c1, we get

(a1 − b1)
(
a1

2b2 − a2b1
2
)
= 0.

It may vanish only because of the second factor, therefore, separating the variables we get
a2/a

2
1 = b2/b

2
1 = −m where m is a constant. Then

a(x) + b(y) =
1

m
(ln(mx+ α) + ln(my + β) + ln(n)),

and three equations for c(t) are

c3 = mc22, c3c1 = c22, mc1c2 + c1c3 − 2c22 = 0.

Consequently, c(t) = γemt + γ̃, and the pair has the form (xy, x+ y).
Case (11.4)

a1
2b1r2 − a1

2b2r1 − a1b1
2r2 + a2b1

2r1 = 0. (6)

From this we get
r2
r1

=
a1

2b2 − a2b1
2

a1b1 (a1 − b1)
(7)

(the denominator is not zero). The condition that
r2
r1

is a function of x+ y, namely the equality

of its derivatives with respect to x and y, is

−a1
4b1b3 + a1

4b2
2 + a1

3b1
2b3 − 2 a1

3b1b2
2 − a1

2a3b1
3 + 2 a1a2

2b1
3 + a1a3b1

4 − a2
2b1

4 = 0 (8)

−A4B

(
d

dB
G (B)

)
G (B) +A4 (G (B))

2
+A3B2

(
d

dB
G (B)

)
G (B)−

−2A3B (G (B))
2 −A2

(
d

dA
F (A)

)
F (A)B3 + 2A (F (A))

2
B3 +

+A

(
d

dA
F (A)

)
F (A)B4 − (F (A))

2
B4 = 0.

After the substitution f(A) =
√
F (A), g(B) =

√
G(B) we previous equation becomes linear

−A4B
d

dB
g (B) + 2A4g (B) +A3B2 d

dB
g (B)− 4A3Bg (B)−

A2B3 d

dA
f (A) + 4Af (A)B3 +AB4 d

dA
f (A)− 2 f (A)B4 = 0.
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From this we find
d

dB
g and write the condition of its independence from A:

−A4B2 d2

dA2
f (A) + 2A3B3 d2

dA2
f (A)−A2B4 d2

dA2
f (A) + 6A3B2 d

dA
f (A)− 10A2B3 d

dA
f (A) +

+4AB4 d

dA
f (A) + 2A4g (B)− 12A2B2f (A) + 16Af (A)B3 − 6 f (A)B4 = 0.

Now we express g(B) and write the condition of its independence from A:

A3 d3

dA3
f (A)− 6A2 d2

dA2
f (A) + 18A

d

dA
f (A)− 24 f (A) = 0.

By looking for solutions of the form f(A) = Am, we get the equation

m(m− 1)(m− 2)− 6m(m− 1) + 18m− 24 = (m− 2)(m− 3)(m− 4).

Hence, a general solution to (9) is f(A) = l1A
4 + m1A

3 + n1A
2. By eliminating f(A) from

(9), we obtain g(B) = l2B
4 + m2B

3 + n2B
2. Substituting these f(A) and g(B) in (9), we get

l1 = l2, m1 = m2, n1 = n2. Finally, f(A) = lA4 +mA3 +nA2, g(B) = lB4 +mB3 +nB2. We
see that α(x) = a′(x) and β(y) = b′(y) satisfy the same differential equation

dα

dx
=
√
lα4 +mα3 + nα2,

dβ

dy
=
√
lβ4 +mβ3 + nβ2. (9)

Since a and b are not linear, we may assume that the constants l, m, and n are not zeros
simultaneously. Thus, if l = n = 0 and m ̸= 0 (Case (11.4.1)), then∫

dt

t
√
mt

=
−2√
t
.

Therefore

a′(x) = α(x) =
4

m(x+ C)2
, a(x) = − 4

m(x+ C)
+ C̃ , a′′(x) =

−8

m(x+ C)3
.

Analogously,

b′(x) = β(x) =
4

m(y +D)2
, b(y) = − 4

m(y +D)
+ D̃ , b′′(y) =

−8

m(y +D)3
.

Now, from (7) we get
r2
r1

=
a21b2 − a2b

2
1

a1b1(a1 − b1)
,

and then we have r(t) = − ρ

t+ C +D
. Computing c2/c1 from any of (4) and substituting the

expression for r2/r1, we get
c2
c1

=
a1b2 − a2b1
a1b1(a1 − b1)

and
c(a(x) + b(y)) =

1
1

x+C + 1
y+D

.

Thus, the pair has the form (
z1 =

xy

x+ y
, z2 =

1

x+ y

)
.
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If l ̸= 0 or n ̸= 0 (Case (11.4.2)), then

∫
dt

t
√
lt2 +mt+ n

=
−2√
lt2 + n

arctgh

(√
lt2 +mt+ n√

lt2 + n

)
,

and we get a′(x) = α(x) and b′(y) = β(y) as inversion of the integrals, and a(x) and b(y) by one
more integration. As in the previous case, from (7) we get r(t) and c(t) from any relation of (4).

Finally, we have the theorem.

Theorem 5. Let z1(x, y) and z2(x, y) is an L-pair of complexity one, then this pair up G-action
has the form
For N(z1) = 0, N(z2) = 1
(01.1) z1 = a(x), z2 = x+ y, a is arbitrary,
(01.2) z1 = x, z2 = xy,
For N(z1) = N(z2) = 1
(11.1) z1 = c(x+ y), z2 = r(x+ y), where c and r are arbitrary,
(11.2) z1 = a(x)y, z2 = xy, a is arbitrary,
(11.3) z1 = xy, z2 = x+ y,

(11.4.1) z1 =
xy

x+ y
, z2 =

1

x+ y
,

(11.4.2) In this case there are no explicit expressions for the pair z1 = c(a(x) + b(y)), z2 =
r(x + y). The four functions (a, b, c, r) are constructed as described above. In particular, they
can be expressed by quadratures.

As shown above, all pairs in this list are L-pairs. In Cases (01.1), (01.2), (11.1), (11.2) it is
obvious. In Case (11.3) we can also see it easily: z = xy+ t(x+ y) = (x+ t)(y+ t)− t2. In Case
(11.4.1) it is not that clear. We need to check that

z =
xy

x+ y
+ t

1

x+ y
=

t+ xy

x+ y
∈ Cl1 for all t.

After the change t by t2 we get

z =
t2 + xy

x+ y
.

By replacing x with tx, y with ty, and z with t/z, we get

z =
x+ y

1 + xy
.

Now, we replace x with th(x), y with th(y), and z with th(z) and use the addition formula

th(x+ y) =
th(x) + th(y)

1 + th(x) th(y)

to get z = x+ y. Since all the transformations here do not change complexity, this proves that
the complexity of the original function is 1.

For Case (11.4.2) the author does not know a similar reasoning. The open question is what
mysterious relations are behind that fact.

The set of pairs of complexity one is certainly wider than the set of L-pairs of complexity
one. This is another open problem: to describe all pairs of complexity one.
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3. O(2)-simplicity
The standard action of the O(2) on the (x, y)-plane is

gϕ = ( x → cos(ϕ)x− sin(ϕ)y, y → sin(ϕ)x+ cos(ϕ)y )

where ϕ ∈ C. This action induces an action on functions

z(x, y) → gϕ(z)(x, y) = z(cos(ϕ)x− sin(ϕ)y, sin(ϕ)x+ cos(ϕ)y).

Denote t = tg(ϕ/2), then we have another form for this action

gt =

(
x → 1− t2

1 + t2
x− 2

t

t2 + 1
y, y → 1− t2

t2 + 1
y + 2

t

1 + t2
x

)
.

If N(z(x, y)) = n, then N(z(λx, λy)) = n also, therefore we can replace gt(x, y) with ht(x, y) =
(1 + t2) gt(x, y).

If N(z) 6 n, then N(gϕ(z)) 6 n + 1, and for arbitrary z and ϕ there is no reason to expect
that N(gϕ(z)) 6 n. For example, let z = xy, then N(z) = 1. For δ(ht(z)) we have

4 t
(
x2 + y2

)
(t− 1) (t+ 1)

(
t2 + 2 t− 1

) (
t2 − 2 t− 1

) (
t2 + 1

)4
.

We see that N(ht(xy)) = 1 only for 9 values of t, namely t = 0, ±1, ±i,±1 ±
√
2. The corre-

sponding functions are proportional to

xy, x2 − y2, (x± iy)2.

For another values t the complexity N(ht(xy)) is equal to two.

Definition. A function z(x, y) is called O(2)-simple if N(gt(z)) 6 1 for all t.

All linear functions are, of course, O(2)-simple. Now, we want to describe all O(2)-simple
functions. It is clear that for such functions N(z) 6 1, then z = c(a(x) + b(y)). If one of the
functions (a, b, c) is constant, then N(z) = 0, and z depends on only one variable or a constant.
Any such function is O(2)-simple (Case 0). Assume that N(z) = 1, i.e. a, b, c are not constant.

Statement 6. (1) z is O(2)-simple if and only if δ(gt(z)) = 0 for all (x, y, t).
(2) c(a(x) + b(y)) is O(2)-simple if and only if a(x) + b(y) is O(2)-simple. (3) z(x, y) is O(2)-
simple if and only if z(y, x) is O(2)-simple.

The proof is obvious.
Let a(x) + b(y) is O(2)-simple, then, in particular,

d

dt
δ(gt(a(x) + b(y)))|t=0 = 0, (10)

in index notation for derivatives we have

−a1
2a2b2 − a1

2b1b3 + a1
2b2

2 − a1a3b1
2 + a2

2b1
2 − a2b1

2b2 = 0. (11)

We can decrease the order of equation (11) twice. First, putting a1 = a′(x) = A, b1 = b′(y) =
B). Second, introducing P (A) = a2 = a′′(x), Q(B) = b2 = b′′(y). In this notation we have
P ′′(a) = P ′(A)P (A), Q′′(B) = Q′(B)Q(B) and we can write (11) as

−QA2P −BQ1QA2 +Q2A2 −B2AP1P +B2P 2 −B2QP = 0 (12)
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By differentiating (12) wit respect to A, we get

−2QAP −QA2P1 − 2ABQ1Q+ 2Q2A+B2P1P −B2AP2P −B2AP 2
1 −B2QP = 0. (13)

The relations (12) и (13) are a system of linear equations in Q(B) and Q′(B), its determinant is
equal to

−B P A
(
A3P1 +B2AP1 − 2B2P

)
.

This determinant is identically equal to zero only if P (A) = 0 (Case 1). The solution to the
system for Q(B) is

Q(B) = −B2(A2P2P +A2P 2
1 − 3APP1 + 2P 2)

A3P1 +B2AP1 − 2B2P
.

The condition of independence Q from A is

−A3P3 PP1 +A3P2
2P − 2A3P2 P1

2 −AB2P3 PP1 +

+AB2P2
2P − 2AB2P2 P1

2 +A2P2 PP1 + 4A2P1
3 + (14)

+2B2P3 P 2 + 3B2P2 PP1 + 2AP2 P 2 − 10APP1
2 + 6P 2P1 = 0,

which splits into two relations: terms free of B and terms with the factor B2. Eliminating P ′′′(A)
from them, we get

P (AP1 − 2P )
(
AP2 P − 2AP1

2 + 3P1 P
) (

A2PP2 +A2P1
2 − 3APP1 + 2P 2

)
= 0.

The case P = 0 ( Case 1) has been considered above. Now we turn to the remaining cases.

(AP1 − 2P ) = 0 (Case 2),(
AP2 P − 2AP1

2 + 3P1 P
)
= 0 (Case 3),(

A2PP2 +A2P1
2 − 3APP1 + 2P 2

)
= 0 (Case 4).

The solutions to the corresponding differential equations are

P (A) = 0 (Case 1),
P (A) = CA2 (Case 2),

P (A) =
A2

A2C1 + C2
(Case 3),

P (A) = A
√
C1 ln(A) + C2 (Case 4).

To find Q(B) corresponding to P (A), we substitute these solutions in (13).
In Case 1 P (A) = 0, Q(B) = CB.
In Case 2 P (A) = CA2, Q(B) = −CB2.
In Case 3 P (A) = A2/(cA2 + d) and for Q(B) we have

−A6BQQ1 c3 +A6Q2c3 − 3A4BQQ1 c2d−A6Qc2 −A4B2Qc2 + 3A4Q2c2d−
−3A2BQQ1 cd2 +B2A4c− 2A4Qcd− 2A2B2Qcd+ 3A2Q2cd2 − (15)

−BQQ1 d3 −A2B2d−A2Qd2 −B2Qd2 +Q2d3 = 0,

which is a polynomial in A2 and splits into four differential equations of first order on Q(B) (the
coefficients at 1, A2, A4, A6). These equations yield d = 0, and P (A) = Q(B) = C = const.
In Case 4 we have P (A) = A

√
c ln(A) + d and

−2QA2
√
c ln (A) + d−B2Ac− 2ABQQ1 − 2B2Q

√
c ln (A) + d+ 2AQ2 = 0.

– 9 –



Valery K.Beloshapka Three Families of Functions Complexity One

The functions √
c ln (A) + d, A, A2

√
c ln (A) + d

are linearly independent, hence Q(B) = 0 and c = 0. So the answer in Case 4 coincides with the
answer in Case 1 after replacing A → B.

Now we can return to equations in a(x) and b(y) and find the answers:
In Case 1: P (A) = 0 means a′′(x) = 0 and a(x) = α1x + α0, then Q(B) = CB means

b′′(y) = Cb′(y) and b(y) = β1e
Cy +β0. Then we write the O(2)-simplicity condition δ(gt(z)) = 0

for a+ b and see that it holds only for α1β1 = 0. The same goes in Case 4.
In Case 2: P (A) = CA2 means a′′(x) = C(a′(x))2 and a(x) = − ln(α1x+ α0)/C, then from

Q(B) = CB2 we get b(y) = ln(β1y + β0)/C. Since

a(x) + b(y) =
1

C
ln

(
β1y + β0

α1x+ α0

)
,

it is enough to check the O(2)-simplicity condition only for

z =
β1y + β0

α1x+ α0
.

It is easy to see that the condition δ(gt(z)) = 0 holds.
In Case 3: P (A) = C means a′′(x) = C and a(x) = Cx2 + α1x + α0, then from Q(B) = C

we get b(y) = Cy2 + β1y + β0. We see that the O(2)-simplicity condition for a+ b holds.
Thus, we have the theorem.

Theorem 7. The complete list of O(2)-simple functions up to transformations ( z(x, y) →
f(z(x, y)) and ( z(x, y) → z(y, x) ) is

z =
β1 y + β0

α1 x+ α0
,

z = (x2 + y2) + αx+ β y,

z = αx+ β y.

Corollary 8. Any O(2)-simple function is a rational function, up to a transformation ( z(x, y) →
f(z(x, y)) ).

The research was supported by the Russian Foundation for Basic Research, grants no. 14-01-
00709-a and no. 13-01-12417-ofi-m2.
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Три семейства функций сложности один
Валерий К. Белошапка
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Россия

В работе описаны некоторые семейства функций двух переменных аналитической сложности
единица, обладающие некоторыми редкими свойствами. Во-первых, классифицированы линейные
уравнения с постоянными коэффициентами,т.ч. все их аналитические решения имеют слож-
ность не выше единицы (теорема 2). Во-вторых, классифицированы пары аналитических функ-
ций, таких что любая их линейная комбинация имеет сложность не выше единицы (теорема 5).
В-третьих, дано явное описание функций, т.ч. их орбиты под действием группы O(2) состоят
из функций, сложности не выше единицы (теорема 7).

Ключевые слова: редкие семейства, аналитическая сложность.
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