
ISSN 1061-9208, Russian Journal of Mathematical Physics, Vol. 23, No. 3, 2016, pp. 1–. c© Pleiades Publishing, Ltd., 2016.

Algebraic Functions of Complexity One,
a Weierstrass Theorem,

and Three Arithmetic Operations
V. K. Beloshapka

Department of Mechanics and Mathematics, Moscow State University,
Moscow, 119991 Russia,
E-mail: vkb@strogino.ru

Received 31.05.2016

Abstract. The Weierstrass theorem concerning the functions admitting an algebraic addition
theorem enables us to give an explicit description of algebraic functions of two variables of
analytical complexity one. Their description is divided into three cases: the general case, which
is elliptic, and two special ones, a multiplicative and and additive. All cases have a unified
description; these are the orbits of an action of the gauge pseudogroup. The first case is a 1-
parameter family of orbits of “elliptic addition,” the second is the orbit of multiplication, and
the third of addition. Here the multiplication and addition can be derived from the “elliptic
addition” by passages to a limit. On the other hand, the elliptic orbits correspond to complex
structures on the torus, the multiplicative orbit corresponds to the complex structure on the
cylinder, and the additive one to that on the complex plane.
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In [1], a method for measuring the complexity of analytic (possibly multivalued) functions of
two variables was suggested. For every analytic function z(x, y), its analytic complexity N(z) is
defined. This quantity can take the values 0, 1, 2, . . . ,∞. The complexity is zero for the functions
depending on only one variable, of the form a(x) and b(y). The has functions depending on both
the variables have the complexity one provided that there is a local representation of the form
z(x, y) = c(a(x) + b(y)), where (a, b, c) are analytic functions of one variable. The functions of
complexity two are the functions, whose complexity is not equal to zero or one, which have a
representation ;z(x, y) = C(A1(x, y) + B1(x, y)), where A1 and B1 are of complexity not exceeding
one. And so on. If some function z does not enter any of the classes Cln = {z : N(z) 6 n}, then
we set N(z) = ∞. The condition N(z) 6 1 is equivalent to the condition that the germ locally
representing z, satisfies the differential relation

δ1(z) = z′xz′y(z′′′xxyz′′y − z′′′xyyz′x) + z′′xy((z′x)2z′′yy − (z′y)2z′′xx) = 0 (1)

The differential polynomial δ1(z) is the numerator of the rational-differential expression (ln(z′y/z′x))′′xy.
The functions of analytic complexity one are of special interest from this point of view. These

are the simplest functions of two-variables. In [2], the simple (i.e. of complexity one) solutions of
some equations of mathematical physics (Laplace, wave, thermal conductivity, . . . ) were described
explicitly. Here we give a description of algebraic functions of analytic complexity one.

Let there be a function P (x, y) of analytic complexity one. This means that P has a local
representation in the form

P (x, y) = c(a(x) + b(y)), (2)

where (a, b, c) are nonconstant analytic functions of one variable. We pose the following question.
What families of analytic functions (a, b, c) give an algebraic functions as the result? One can
immediately suggest an obvious version: (a, b, c) are algebraic functions of one variable. Further,
since the addition, using the logarithm and the exponential function, can be transformed to the
multiplication, namely,

xy = eln(x)+ln(y), ;
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it follows that the first (additive) variant can be completed by another (multiplicative):

c(t) = γ(et), a(x) = ln(α(x)), b(y) = ln(β(y)), P (x, y) = γ(α(x)β(y)),

where (α, β, γ) are algebraic functions. Is there a third possible variant? This question becomes
especially sharp in connection with a recent result of Stepanova [3]. She proved that, if the same
question is posed with respect to rational functions or polynomials, then the additive and multi-
plicative variants give the entire list of possibilities. Every polynomial of analytic complexity one
has either an additive or a multiplicative representation composed of polynomials. The same holds
for the rational functions.

If an algebraic function is not constant both with respect to x and to y, then in the domain in
which an element c(a(x) + b(y)) of the composition is defined, one can find a point (x0, y0) such
that φ(x) = P (x, y0) and ψ(y) = P (x0, y) are not constant. Transfer the origin on the plane to
the point (x0, y0); in this case, in our representation, a and b have elements representing them in
a neighborhood of zero, and a(0) = b(0) = 0 for these elements. In this case, substituting the zeros
into (1) instead of x and instead of y and taking into account that c is nonconstant, we obtain

c(a(x) = φ(x), a(x) = c−1(φ(x)),

c(b(y)) = ψ(y), b(y) = c−1(ψ(y))

Substitute this into (1) nd make the change

u = φ(x), v = ψ(y).

We obtain
c(c−1(u) + c−1(v)) = P (φ−1(u), ψ−1(v)) (3)

The expression on the right-hand side is an algebraic function; denote it by Q(u, v). Make the
change

u = c(U), v = c(V )
in (3); we obtain

c(U + V ) = Q(c(U), c(V )) (4)
Relation (4) means precisely that the analytic function c(t) satisfies the algebraic addition theorem.
In other words, this means that, among c(U), c(V ), and c(U + V ), there is an algebraic relation of
the form

F (c(U), c(V ), c(U + V )) = 0,

where F is a polynomial in three variables with complex coefficients. As an example of such a
function, one can consider an arbitrary algebraic function. However, it is not hard to find nonalge-
braic examples. For example, et, sin(t), cos(t). The following Weierstrass theorem [4, 5] provides
a complete list of such functions.

Weierstrass theorem. If a holomorphic element of an analytic function c(t) satisfies relation
(4) in some domain of the space (U, V ) (i.e., the algebraic addition theorem), then this is possible
in one and only one of the following three cases:

(1) algebraic, c(t) = η(t),
(2) periodic, c(t) = η(eλt),
(3) doubly periodic, c(t) = η(℘(t)), where η(s) is an arbitrary algebraic function and ℘(t) is the

Weierstrass ℘-function constructed from the lattice L(ω1, ω2), where (ω1, ω2) are the generators of
the lattice.

For the Weierstrass function itself, w = ℘(U + V ) is expressed using u = ℘(U) and v = ℘(V ) by
the function [4]

w = u ¦ v = ℘(℘−1(u) + ℘−1(v)) = −(u + v) +
(
√

H(u)−
√

H(v))2

4(u− v)

where H(t) = 4t3 − g2t− g3 is a cubic polynomial without multiple roots in the Weierstrass form
(u ¦ v is the “elliptic addition”). It can readily be seen that a nonconstant algebraic function can
occur in only one of the three classes.
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Theorem 1. If P (x, y) is an algebraic function of two variables of analytic complexity one, then
it has one and only one representation of the form

(1)P (x, y) = γ(α(x) + β(y)) (additive representation),
(2) P (x, y) = γ(α(x) · β(y)) (multiplicative representation), or
(3) P (x, y) = γ(α(x) ¦ β(y)) (elliptic representation),
where (α, β, γ) are algebraic.

Proof. By (4), one can apply the Weierstrass theorem to c(t). For the first case, c is algebraic,
and thus so are a and b. We obtain

P (x, y) = γ(α(x) + β(y)),

where (α, β, γ) are algebraic.
For the second case: τ = c(t) = γ(eλt), t = c−1(τ) = 1/λ ln(γ−1(τ)), a(x) = 1/λ ln(γ−1(φ(x))), b(y) =

1/λ ln(γ−1(ψ(y))), and therefore

P (x, y) = c(a(x) + b(y)) = γ(exp λ(1/λ ln(γ−1(φ(x))) + 1/λ ln(γ−1(ψ(y)))))

= γ(α(x)β(y)), where α(x) = γ−1(φ(x)), β(y) = γ−1(ψ(y)).
(5)

For the third case: τ = c(t) = γ(℘(t)), t = c−1(τ) = ℘−1(γ−1(τ)), a(x) = ℘−1(γ−1(φ(x))), b(y) =
℘−1(γ−1(ψ(y))), and therefore

P (x, y) = c(a(x) + b(y)) = γ(℘(℘−1(γ−1(φ(x))) + ℘−1(γ−1(ψ(y))))

= γ(℘(℘−1(α(x)) + ℘−1(β(y)) = γ(℘(℘−1(α(x)) ¦ ℘−1(β(y)),

where α(x) = γ−1(φ(x)), β(y) = γ−1(ψ(y)).

(6)

To complete the proof of the theorem, it remains to show that the classes of algebraic functions
of complexity one (mentioned in the theorem) are disjoint. This follows from the uniqueness of
the representation of an analytic function in the form (1) with nonconstant (a, b, c) (Lemma 2 and
Proposition 3).

Lemma 2. Let three nonconstant holomorphic functions (a(t), b(t), c(t)) satisfy a relation of
the form

c(a(x) + b(y)) = x + y

on an open set of the plane (x, y); then

a(x) = (x + p)/k, b(y) = (y + q)/k, c(t) = kt− (p + q)),

where k 6= 0.

Proof. Differentiate the identity with respect to x and to y. Since a and b are nonconstant, it
follows that c′′ = 0 and c(t) = kt + l, which implies in turn that a and b are also linear and the
family (a, b, c) has the above form.

Lemma 2 implies an assertion concerning the uniqueness of the representation for the functions
of the first class.

Proposition 3. If
c(a(x) + b(y)) = C(A(x) + B(y)),

then A(x) = (a(x) + p)/k, B(y) = (b(y) + q)/k, and C(t) = c(kt− (p + q)).

Proof. In the domain of a holomorphic element of this function, choose values x = x0 and
y = y0 in such a way that a is invertible in a neighborhood of x0, b is invertible in a neighborhood
of y0 and c is invertible in a neighborhood of t0 = a(x0) + b(y0). For the domain mentioned in
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Lemma 2, we take a neighborhood of (x0, y0) and, for the functions, we take elements representing
(a, b, c). Replacing x by a−1(x) and y by b−1(y), we obtain

c−1 ◦ C(A ◦ a−1(x) + B ◦ b−1(y)) = x + y

We see from Lemma 2 that

A ◦ a−1(x) = (x + p)/k, B ◦ b−1(y) = (y + q)/k, c−1 ◦ C(t) = kt− (p + q),

which implies our assertion.

The following pseudogroup (the gage semigroup) acts on the space of functions of two variables:

G = {z(x, y) → χ−1(z(ϕ(x), ψ(y)))},

where (ϕ, ψ, χ) are the germs of nonconstant analytic functions. It is clear that this action does
not change the complexity and that the functions of complexity one form precisely the orbit of the
function (x + y). In other words, with respect to this action, all functions of complexity one are
equivalent. If, to construct the action, one uses algebraic functions (ϕ, ψ, χ) only, then the number
of equivalence classes with respect to this smaller pseudogroup GA is larger. Denote by Clalg

1 the
intersection of Cl1 with the family of algebraic functions in two variables. It is clear that GA acts
on Clalg

1 . One can now reformulate Theorem 1 as follows.

Theorem 4. With regard to the action of GA, the family of algebraic functions of the first class,
Clalg

1 , is the family of orbits of
x + y, xy, x ¦ y.

The functions x+y and xy are specific functions in two variables, while the function x¦y, which
is associated with the Weierstrass ℘-function, depends, together with ℘, on two free parameters,
for example, on a pair of periods. Therefore, the following question is suitable. Let x¦y correspond
to ℘(t, ω1, ω2), and x¦̃y correspond to

℘(t, ω̃1, ω̃2).

Under what relation between these couples of parameters, the functions x¦y and x¦̃y are equivalent
up to a transformation in GA? Here is the answer.

Proposition 5. The functions x¦̃y and x ¦ y are equivalent, i.e., belong to the same orbit of
GA, if and only if he lattices of periods coincide up to multiplication by a nonzero complex constant,
i.e.,

ω̃1 = kω1, ω̃2 = kω2.

Here ℘2(t) = ℘1(t/k).

Proof. Let x¦̃y and x ¦ y be equivalent, i.e.,

x¦̃y = c(a(x) ¦ b(y)),

where (a, b, c) are nonconstant algebraic functions. Let

℘1(t) = ℘(t, ω1, ω2), ℘2(t) = ℘(t, ω̃1, ω̃2).

We have
c(℘1(℘−1

1 (a(x)) + ℘−1
1 (b(y))) = ℘2(℘−1

2 (x) + ℘−1
2 (y))

Then Proposition 3 enables us to conclude that

℘−1
1 (a(x) =

℘−1
2 (x) + p

k
, ℘−1

1 (b(y) =
℘−1

2 (y) + q

k
, c(℘1(t)) = ℘2(kt− (p + q)),
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whence, further,

a(x) = ℘1(
℘−1

2 (x) + p

k
), b(y) = ℘1(

℘−1
2 (y) + q

k
).

The elliptic integral ℘−1
2 (t) is an infinitely-valued analytic function whose germs at a chosen point

differ by constants of the form
m1ω̃1 + m2ω̃2

k
,

and therefore the functions a and b can be finitely valued only for the case in which the image of
the second lattice

L̃

k
= L(

ω̃1

k
,
ω̃2

k
)

is contained in the first lattice, L = (ω1, ω2). Since the action is invertible, we obtain the converse
inclusion, that is, L̃ = kL, and thus ℘2(t) = ℘1(t/k). This completes the proof of the proposition.

Thus, all algebraic functions of analytic complexity one form the family of orbits of three binary
operations (elliptic addition, multiplication, and the usual addition) under the action of the alge-
braic gauge group GA. Here the elliptic addition is the base operation; the multiplication occurs in
the passage to the limit as ω2 → ∞, and the addition occurs, in turn, in the passage to the limit
as ω1 →∞, ω2 →∞.

The possibility of factorization by the complex multiplication enables one to define “elliptic”
orbits by a single parameter. By setting k = 1/ω1, we transform the lattice L(ω1, ω2) to the lattice
L(1, τ). The change τ → −τ does not modify the lattice, and we can therefore assume that Imτ > 0.
The remaining discrete degrees of freedom are described by the action of the modular group [6].
After passing to the quotient of the upper half-plane by the action of the modular group, we obtain
a one-dimensional complex manifold with singularities (an orbifold) homeomorphic to the two-
dimensional real plane. The points of this orbifold are, on one hand, in a one-to-one correspondence
with the elliptic orbits of GA and, on the other hand, with the classes of affinely equivalent lattices,
i.e., with the complex structures on the two-dimensional torus. The quotients with respect to the
degenerate lattices, the cylinder and plane, also, on one hand, correspond to unique operations, to
the multiplication and addition, and, on the other hand, admit unique complex structures.

While working on the article, the author had fruitful discussions with A. V. Domrin and I. V. Ar-
tamkin, for which he is grateful to them.

The author considers this publication as a modest contribution to the ongoing celebration of the
200th anniversary of the great German mathematician Carl Theodor Wilhelm Weierstrass.
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