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Abstract—From the point of view of analytic complexity theory, all harmonic functions of two
variables split into three classes: functions of complexity zero, one, and two. Only linear functions
of one variable have complexity zero. This paper contains a complete description of simple
harmonic functions, i.e., of functions of analytic complexity one. These functions constitute a
seven-dimensional family expressible as integrals of elliptic functions. All other harmonic functions
have complexity two and are, in this sense, of higher complexity. Solutions of the wave equation, the
heat equation, and the Hopf equation are also studied.
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Almost each mathematical science possesses its own approach to the problem of measuring com-
plexity of objects studied in it. Classical complexity theory is the theory of complexity of algorithms
with its variations [1], [2]. Mathematical analysis is no exception [3], [4]. A method for measuring the
complexity of analytic functions of two variables was proposed in [5]; this method was later applied in [6]
and [7]. For any analytic function z(x, y), its analytic complexity N(z) was defined. This quantity can
take the values (0, 1, 2, . . . ,∞). Functions depending only on one variable, such as a(x) or b(y), have
complexity zero. Functions depending on two variables expressible as z(x, y) = c(a(x) + b(y)), where
(a, b, c) are analytic functions of one variable, have complexity one. It is easy to verify that the condition
N(z) = 1 is equivalent to the fact that the germ locally expressing z satisfies the differential relation

δ1(z) = z′xz
′
y(z

′′′
xxyz

′′
y − z′′′xyyz

′
x) + z′′xy((z

′
x)

2z′′yy − (z′y)
2z′′xx) = 0. (1)

The differential polynomial δ1(z) is the numerator of the differential rational expression (ln(z′y/z
′
x))

′′
xy .

Functions of complexity two are functions whose complexity is neither zero nor one and which can be
expressed in the form z(x, y) = C(A1(x, y) +B1(x, y)), where A1 and B1 have complexity at most one.
And so forth. But if a function z does not belong to any one of the classes Cln = {z : N(z) ≤ n}, then
we set N(z) = ∞.

From this point of view, let us consider the class of real-valued (somewhere harmonic, possibly
multivalued) functions of two variables, i.e., the class of the local solutions of the Laplace equation

Δz = z′′xx + z′′yy = 0.

Harmonic functions of complexity zero are linear functions of one variable, i.e., functions of the form
z = kx+ b or z = ky + b. On the other hand, any harmonic function can be expressed locally as
z(x, y) = f(x+ iy) + f(x− iy) (recall that complex-valued functions can be used in the construction
of complexity classes). Hence it immediately follows that its complexity N(z) is at most two. Using this
criterion, we can see that a generic harmonic function has complexity two. For example, the complexity
of the real and imaginary parts of all power functions z = (x+ iy)n for all n ≥ 3 is two. Thus, all
harmonic functions are divided into two groups: simple with complexity at most one and complex
with complexity two. It is well known that the linear space of harmonic functions on the fixed disk is
infinite-dimensional. In the present paper, it will be shown that the family of simple harmonic functions
is seven-dimensional, i.e., it depends on seven independent parameters.
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Here are six simple functions whose complexity is one:

x2 − y2, 2xy, ex cos(y), ex sin(y),
1

2
ln(x2 + y2), arctan

(
y

x

)
. (2)

On the basis of each of these functions, we can construct a parametric family. For example, here are
two four-parametric solutions:

z = c1((x+ c2)
2 − (y + c3)

2) + c4, z = c1e
c2x cos(c2y + c3) + c4. (3)

Thus, let z(x, y) = c(a(x) + b(y)) be a simple harmonic function. For the derivatives of the functions
a, b, c, we shall use the following simplified notation:

a′(x) = a1, a′′(x) = a2, . . . , b′(y) = b1, b′′(y) = b2, . . . ,

c′(a(x) + b(y)) = c1, c′′(a(x) + b(y)) = c2, . . . .

The condition for z to be harmonic yields

c2a1
2 + c1a2 + c2b1

2 + c1b2 = 0. (4)

Differentiating this relation with respect to x and y, we obtain

c3a1
3 + 3c2a1a2 + c1a3 + c3a1b1

2 + c2a1b2 = 0,

c3b1a1
2 + c2b1a2 + c3b1

3 + 3c2b1b2 + c1b3 = 0.

The three relations given above are linear in the derivatives (c1, c2, c3). If there exists a solution with
a nonconstant function c(t), then the determinant of this homogenous system must be zero; hence we
have

(a1
2 + b1

2)
(
b3a1

3 − a3b1a1
2 + 2a1a2

2b1 + a1b3b1
2 − 2a1b2

2b1 − a3b1
3
)
= 0.

If a and b are not constant, then (a1
2 + b1

2) is a nonzero multiplier, and we obtain the following relation
for a and b:

b3a1
3 − a3b1a1

2 + 2a1a2
2b1 + a1b3b1

2 − 2a1b2
2b1 − a3b1

3 = 0. (5)

This relation can be obtained in another way. If b is not constant, then, locally, we can pass from
the variables (x, y) to the variables (x, t = a(x) + b(y)). Here the variable y becomes the function
y = y(x, t); furthermore,

∂

∂x
y(x, t) = −da(x)/dx

db(y)/dy
.

Using relation (4) in these variables, we can express (ln(c′(t)))′ = c′′(t)/c′(t) in terms of a and b. And
then Eq. (5) obtained above is a condition for the right-hand side of the expression for the logarithmic
derivative to be independent of x.

Statement 1. (1) The nonconstant functions a and b satisfy relation (5) if and only if there exists
a nonconstant function c(t) such that z = c(a(x) + b(y)) is harmonic, i.e., z is a simple harmonic
function.

(2) If the solution of (5) is fixed, then the function c(t) is uniquely defined up to real linear
replacement c(t) → k1(c(t)− k2).

Expressing b3 from (5), we obtain

b3 =
b1(2a1b2

2 + a3a1
2 − 2a1a2

2 + a3b1
2)

a1(a12 + b1
2)

.

Differentiating this relation with respect to x, we can write

− 4a2b2
2a1

3 + a4a1
5 + 2a4a1

3b1
2 − 5a3a1

4a2

− 6a3a1
2a2b1

2 + 4a2
3a1

3 + a1a4b1
4 − a2a3b1

4 = 0.
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Expressing b2 from the above relation, we obtain

b2 =

√
a1a2

(
−6a3a12a2b1

2 + a4a15 + 2a4a13b1
2 − 5a3a14a2 + 4a23a13 + a1a4b1

4 − a2a3b1
4
)

2a1
2a2

. (6)

Differentiating this relation with respect to x, we can write

a1
2a2a5 − a1

2a3a4 − 3a2
2a4a1 + 3a2

3a3 = 0. (7)

It can be verified that if relations (7) and (6) hold, then the condition for the expressions for b2 and b3 to
be consistent, which is the equality between the derivative of b2 and b3, holds automatically.

Thus, we have obtained the following algorithm for constructing simple harmonic functions.

Statement 2. Any simple harmonic function z = c(a(x) + b(y)) can be constructed as follows:

• the function a(x) is an arbitrary solution of the fifth-order equation (7);

• the function b(y) is an arbitrary solution of the second-order equation (6) with a(x)
obtained above;

• the function c(t) is an arbitrary solution of the second-order equation (4) with a and b
constructed above.

Obviously, in Statement 2, we can interchange a and b, i.e., b will satisfy Eq. (7), while the function a
can be obtained from the fixed solution b.

Let us estimate the number of parameters on which the family of simple harmonic functions depends.
The choice of a(x) depends on five parameters, one of which is additive. The choice of b(y) depends on
two parameters, one of which is additive as well. These two additive parameters are added together with
the parameter k2 of arbitrary value from Statement 1. Thus,

(5− 1) + (2− 1) + 2 = 7.

We can decrease the order of Eq. (5) twice. First, in passing to A(x) = a′(x), B(y) = b′(y) and,
second, in introducing

P (A) = A′(x) = a′′(x), Q(B) = B′(y) = b′′(y)

for the unknown functions. Here the following relation holds:

A′′(x) = P ′(A)P (A), B′′(y) = Q′(B)Q(B).

We obtain

P ′(A)P (A)(A2B +B3)−Q′(B)Q(B)(B2A+A3) + 2AB((Q(B))2 − (P (A))2) = 0. (8)

If we pass to p(A) = (P (A))2, q(B) = (Q(B))2, then the equation becomes linear:

(p′(A)B − q′(B)A)(A2 +B2) + 4AB(q(B)− p(A)) = 0. (9)

Let us express q′(B) from Eq. 9 and differentiate the result with respect to A, obtaining

p′′(A)A5 + 2p′′(A)A3B2 − 5p′(A)A4 − 6p′(A)A2B2

+Ap′′(A)B4 − 8q(B)A3 + 8p(A)A3 − p(A)B4 = 0.

This yields

q(B) =
1

8
A2p′′(A) +

1

4
p′′(A)B2 − 5

8
Ap′(A)− 3

4
p′(A)B2A

+
1

8
p′′(A)B4A2 + p(A)− 1

8
p′(A)B4A3. (10)

Differentiating with respect to A, we obtain

p′′′(A)A3 − 3p′′(A)A2 + 3p′(A)A = 0. (11)
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Let us search for solutions of the form p = Am; we have the equation

m(m− 1)(m− 2) + 3m(m− 1) + 3m = 0

The solutions are m = 0, 2, 4; therefore, the general solution of Eq. (11) is of the form

p(A) = C1 + C2A
2 + C3A

4 (12)

From (10), we then obtain

q(B) = C1 − C2B
2 + C3B

4. (13)

Substituting (12)) and (13)) into (9), we see that the resulting (p(A), q(B)) is the general solution of (9)).
Returning to the previous notation, we obtain an equation with separating variables,

a′′(x) = P (A) =
√

C1 + C2(a′(x))2 + C3(a′(x))4 .

Denote

φ(A) =

ˆ
dA√

C1 + C2A2 + C3A4
.

This function can be expressed via the elliptic integral of the first kind

F (x, k) =

ˆ x

0

dζ√
C1 + C2ζ2 + C3ζ4

;

namely, if

C1 + C2A
2 + C3A

4 =
−1

λ2
(A2 + μ2)(A2 + ν2),

then

φ(A) =
1

ν
F

(
iA

ν
,
ν

μ

)
.

Thus, under the condition μ2 �= ν2, the derivative a′(x) is an elliptic function, a′(x) = φ−1(x+C4), and
the function

a(x) =

ˆ
φ−1(x+ C4) dx+ C̃1

is its antiderivative. But if μ2 = ν2, then φ(A) is an elementary function and can be expressed via the
logarithm. Further, if

ψ(B) =

ˆ
dB√

C1 − C2B2 + C3B4
=

1

iν
F

(
B

ν
,
ν

μ

)
,

then

b′(y) = ψ−1(y + C5), b(y) =

ˆ
ψ−1(y + C5) dy + C̃2

where b′ is elliptic under the condition μ2 �= ν2. Further, as described above (see Statement 1), we
recover the function c(t), which is uniquely defined up to the choice of (k1, k2). Here the sum C̃1 + C̃2 is
absorbed by the constant k2.

Recall that a function is said to be expressed by quadratures if it is presented as the composition
of elementary functions, their antiderivatives, and their inverses. Above, we have proved the following
statement.

Statement 3. (a) The functions (a(x), b(y), c(t)) appearing in the representation of simple har-
monic functions can be expressed by quadratures.

(b) The functions a′(x), b′(y) are elementary or elliptic.
(c) The general solution depends on the family of seven constants (C1, C2, C3, C4, C5, k1, k2).
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In conclusion, note that it is easy to adapt our construction to the analysis of the complexity of the
analytic solutions of other equations, such as those of the wave equation z′′xx − z′′yy = 0. The general
solution is of the form

z = f(x+ y) + g(x− y) (d’Alembert’s formula);

therefore, the complexity of the analytic solutions of the wave equation is also at most two and this leads
to the problem of describing simple solutions, i.e., solutions of complexity one. Our approach can be
used to solve this problem. The answer is similar. The simple functions form a seven-dimensional family
expressible as integrals of elliptic and elementary functions.

But if we turn to the solutions of the heat equation z′y = z′′xx, then the situation is different. We have
no upper bound for the complexity of its analytic solutions. But we can study the problem of describing
simple solutions z = c(a(x) + b(y)), i.e., those of complexity one. Applying the procedure described
above and eliminating the functions c(t) and b(y), we obtain the following equation for a(x):

2a22a
2
3a1 − 2a42a3 − 5a21a

3
3 + 5a21a2a4a3 + 2a1a

3
2a4 + a31a5a3 − 2a21a5a

2
2 − a31a

2
4 = 0, (14)

which, after decreasing the order twice, (a′(x) = A, a′′(x) = P (A)) takes the form

4P (A)P ′(A)2A− 2P (A)2P ′(A) − 2A2P ′(A)3 − 3P (A)A2P ′(A)P ′′(A)

+ 2P (A)2AP ′′(A) + P (A)A3P ′(A)P ′′′(A) + 2A3P ′(A)2P ′′(A)

− 2P (A)2A2P ′′′(A)− P (A)A3P ′′(A)2 = 0.

This equation has a solution by quadratures, just as the equations for b and c. As a result, we also obtain
a seven-dimensional family of simple solutions to the heat equation.

We are unaware of any estimate of the complexity of the analytic solutions of the Hopf equation
z′y = zz′x. However, the simple solutions z = c(a(x) + b(y)) are of the form

z =
α−mx

β +my
,

where a and b are expressed via the logarithm and c via the exponential.
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