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Abstract. In the paper, an unexpected correspondence between the automorphisms of
5D real uniformly 2-nondegenerate hypersurfaces of the space C3 and the automorphisms of
the 3D hypersphere in C2 is constructed. In a certain sense, the 3D hypersphere, which is,
as is known, a model surface for the class of nondegenerate 3D hypersurfaces in C2, has this
status also with respect to the above class of 5D hypersurfaces in C3.
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1. INTRODUCTION

If (z, w) are the coordinates of the space C2, then the local equation of a Levi-nondegenerate real
analytic hypersurface has (after an analytic simplification) the form ℑw = |z|2+O(3) (O(m) stands
for the terms of the series of degree at least m). If (z, ζ, w) are the coordinates of the space C3,
then the local equation of the hypersurface whose Levi form at the origin is of rank one has (after
an analytic simplification) quite the same form ℑw = |z|2 + O(3). Here the equation ℑw = |z|2
in C2 defines a 3D hypersurface projectively equivalent to the standard sphere |z|2 + |w|2 = 1,
and the group of holomorphic automorphisms of this hypersurface is isomorphic to the 8D classical
group SU(2, 1). At the same time, the 5D hypersurface defined by the same equation in C3 has
the structure of the direct product of the sphere in C2 by the complex line and its automorphism
group is infinite-dimensional. The hypersurface of the form

ℑw = |z|2 +O(3)

in C3 has rank one at the origin, and the rank in a neighborhood of the origin is not less than
one. If the rank of a hypersurface is equal to one in a full neighborhood of the origin, then we say
that our hypersurface is uniformly Levi-degenerate. The condition for the validity of this property
for our hypersurface is the condition that the determinant of the matrix of the Levi form, which
is a Hermitian matrix of size (2× 2), vanishes. Further, the following dichotomy occurs. If there is
a holomorphic vector field L such that L + L̄ occurs in the complex tangent to the hypersurface
at every point, then the surface is said to be holomorphically degenerate and again has (in certain
local holomorphic coordinates) the form of direct product of a hypersurface in C2 and the complex
line. The automorphism group is infinite-dimensional in this case again. In the opposite case, the
hypersurface satisfies a nondegeneracy condition, which is referred to as 2-nondegeneracy (see [4]).
We say that every surface of this kind is uniformly 2-nondegenerate, and this surface is the main
object of our investigation. For the subsequent presentation, it is more convenient to speak about the
weights of monomials rather than on their degrees. We define the weights of the monomials by the
following choice of the weights of the variables:

[z] = [z̄] = [ζ] = [ζ̄] = 1, [w] = [w̄] = 2.
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We treat now the notation O(m) as the sum of monomials whose weights are greater than or equal
to m. It can readily be seen that a uniformly 2-nondegenerate hypersurface in C3 has an equation
of the form

ℑw = |z|2 + 2ℜ(z2ζ̄) +O(4)

(see [6]). As was proved in [1], the dimension of the stabilizer of the origin in the group of holo-
morphic automorphisms of this hypersurface does not exceed six, and the dimension of the entire
group does not exceed 11. Combining this result with the known classification of Fels and Kaup
[7] of the homogeneous 2-nondegenerate hypersurfaces, one can readily improve the bound for the
dimension of the full group to 10. This result is exact, because 10 is the dimension of the light cone

(ℑw)2 = (ℑz)2 + (ℑζ)2.

The dimension of the stabilizer of a point of the light cone is equal to five (see [8]), which coincides
wonderfully with the dimension of the stabilizer of a point of the sphere in C2. The present paper
contains an explanation of this coincidence (see Theorem 5 below). Note that an exact bound for
the dimension of a stabilizer was obtained in [9], where the authors have proved that the light cone
has the largest stabilizer in the class of uniformly 2-nondegenerate hypersurfaces.

1. HOMOLOGICAL OPERATOR, THE KERNEL, AND THE NORMALIZATION

Let Γξ be the germ of a real analytic uniformly 2-nondegenerate hypersurface of 3D complex
space. Then one can choose a coordinate system (z ∈ C, ζ ∈ C, w = u+ iv ∈ C) in a neighborhood
of ξ in such a way that the equation Γξ becomes

v = zz̄ + ℜ(z2ζ̄) + F4 + F5 + · · · (1)

Here we assign the weights to the variables as follows:

[z] = [z̄] = [ζ] = [ζ̄] = 1, [u] = 2.

Let us apply the standard apparatus in the style of Poincaré (formal series and the homological
equation) to this class of hypersurfaces. Let

z → z + f3 + · · · , ζ → ζ + h2 + · · · , w → w + g4 + · · · , (2)

takes Γ0 onto another germ of the same kind, Γ̃0, which is given by the equation

v = zz̄ + 2ℜ(z2ζ̄) + F̃4 + F̃5 + · · · (3)

In this case, writing out the relation thus occurring and distinguishing the component of weight m
in this relation, we obtain

ℜ(igm(z, ζ, w) + 2z̄fm−1(z, ζ, w) + 2z̄2hm−1(z, ζ, w)) = F̃m(z, z̄, ζ, ζ̄, u)− Fm(z, z̄, ζ, ζ̄, u) + · · · ,

where w = u + i|z|2, and this w is of weight 2, and the dots stand for the terms depending on

gµ, fµ−1, hµ−2, Fµ, F̃µ for µ < m.

Let us evaluate the kernel of the homological operator

L(g, f, h) = ℜ(ig(z, ζ, u+ i|z|2) + 2z̄f(z, ζ, u+ i|z|2) + 2z̄2h(z, ζ, u+ i|z|2)) = 0. (4)

Introduce the notation

f(0, 0, u) = a(u), g(0, 0, u) = b(u), h(0, 0, u) = c(u),

∂f

∂z
(0, 0, u) = d(u),

∂h

∂z
(0, 0, u) = e(u),

∂2h

∂z2
(0, 0, u) = m(u).

(5)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 22 No. 4 2015



THE SPHERE IN C2 AS A MODEL SURFACE 439

Writing z̄ = ζ̄ = 0 in (4), we obtain

g(z, ζ, u) = b(u) + 2iā(u)z + 2Ic̄(u)z2. (6)

For z = 0, we obtain ℑb(u) = 0. Substitute the expression thus obtained into (4), differentiate with
respect to z̄, and set z̄ = ζ̄ = 0. We obtain

f(z, ζ, u) = a(u) + d(u)z + (2iā′(u)− ē)z2 + 2ic̄(u)z3. (7)

Here b′(u) = 2ℜd(u). Substitute the expression thus obtained into (4), differentiate with respect to
z̄ twice, and set z̄ = ζ̄ = 0. We obtain

h(z, ζ, u) = c(u) + ze(u) +
1

2
m(u)z2 + (2ā′′(u) + 2iē′(u))z3 + 2c̄′′(u)z4. (8)

Here 2ℑd′(u) = ℜm(u). Substitute the expression thus obtained into (4) and write out the form of
several monomials entering (4) after three our substitutions,(1

3
b′′′(u)− d̄′′(u)− d′′(u)− im̄′(u) + im′(u)− im̄′

)
z3z̄3,(

− 4ē′(u) +
8

3
iā′′′(u)

)
z4z̄3,

8

3
ic̄′′′(u)z5z̄3,(1
3
id̄′′′(u)− 1

3
id′′′(u)− 1

2
m′′(u)− 1

2
m̄′′(u)

)
z4z̄4,(

− 4

3
aIV (u) +

4

3
ie′′′(u)

)
z5z̄4,( 1

12
dIV (u) +

1

12
d̄IV (u)− 1

60
bV (u) +

1

6
im̄′′′(u)− 1

6
im′′′(u)

)
z5z̄5.

(9)

If all these summands are equal to zero, then all six functions of one variable, (a, b, c, d, e,m),
are polynomials with the following bounds for the degrees: (3, 4, 2, 3, 2, 2). We obtain finally the
following description of the kernel of the operator L.

Lemma 1.
(a) The kernel of L is the 27D space which consists of the polynomials of the form

g = b0 + 2ℜd0u+ ℜd1u2 +
2

3
ℜd2u3 +

1

2
d3u

4 + 2i(ā0 + ā1u+ ā2u
2

+ ā3u
3)z + 2i(c̄0 + c̄1u+ c̄2u

2)z2,

f = a0 + a1u+ a2u
2 + a3u

3 + (d0 + d1u+ d2u
2 + d3u

3)z

+ (2iā1 + 4iā2u+ 4iā3u
2 − ē0 − ē1u)z

2 + (2ic̄1 + 4ic̄2u)z
3,

h = 4c̄2z
4 + (4ā2 + 4ā3u+ 2iē1)z

3

+ (ℑd1 +
1

2
im0 + 2uℑd2 −

2

3
iuℜd2 − id3u

2)z2 + z(e0 + e1u− 2ia3u
2) + c0 + c1u+ c2u

2.

(10)
Here (a0, a1, a2, a3, c0, c1, c2, d0, d1, d2, e0, e1) are complex parameters and (b0, d3,m0) are real ones.

(b) If one considers the expansion of the kernel with respect to the weight components, then the
leading component is (g8, f7, h6).

The real power series F in the variables (z, z̄, ζ, ζ̄, u) can be represented in the form∑
cα,β,γ,δ(u)z

αz̄βζγ ζ̄δ.
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The following components were used to evaluate the kernel of the operator:

(α, 0, γ, 0), (α, 1, γ, 0), (α, 2, γ, 0)

for all values of α and β, and also

(3, 3, 0, 0), (4, 3, 0, 0), (5, 3, 0, 0), (4, 4, 0, 0), (5, 4, 0, 0), and (5, 5, 0, 0).

Define the direct decomposition of the space of real power series F into the direct sum of two
subspaces R and N , where R are the sums of monomials of the above form and the sums conjugate
to them and N are the real series composed of the monomials which do not enter R. Repeating
the same calculations for the nonhomogeneous equations, we obtain the following assertion.

Lemma 2. The linear nonhomogeneous equation L(g, f, h) = T mod N is solvable for an
arbitrary right-hand side T .

Using relation (4) for the recurrent evaluation of the consecutive triples (gm, fm−1, hm−2) and,
using the two lemmas proved above we obtain the following proposition.

Proposition 3.
(a) The equation of a hypersurface of the form (1) can be reduced by a formal change of variables

to a formal normal form

ℑw = |z|2 + 2ℜ(z2ζ̄) +O(4) = |z|2 + 2ℜ(z2ζ̄) +
∑

Nα,β,γ,δ(u)z
αz̄βζγ ζ̄δ, (11)

where
Nα,0γ,0(u) = Nα,1γ,0(u) = Nα,2γ,0(u) = 0

for all values of α and γ, and also

N3,3,0,0(u) = N4,3,0,0(u) = N5,3,0,0(u) = N4,4,0,0(u) = N5,4,0,0(u) = N5,5,0,0(u) = 0.

(b) If there are two mappings of the form

w → w +O(9), z → z +O(8), ζ → ζ +O(7)

of one hypersurface of the form (1) onto another hypersurface of this kind (it is assumed that both
the surfaces are chosen), then these mappings coincide. In particular, if this is a mapping of a
hypersurface onto itself, then it is the identity mapping.

Note that, if we need a normalization of a finite segment of the series, then this normalization
can be achieved by a polynomial change of variable.

2. CONDITION OF UNIFORM 2-NONDEGENERACY

Let Γξ be the germ of a real analytic hypersurface of 3D complex space whose Levi form is
degenerate and has a nonzero rank 1 at a point ξ. Then one can choose a coordinate system
(z ∈ C, ζ ∈ C, w = u+ iv ∈ C) in a neighborhood of ξ in such a way that the equation Γξ

becomes
v = zz̄ + terms of degree at least 3 = zz̄ + F (z, z̄, ζ, ζ̄, 2u). (12)

Suppose now that the surface is uniformly 2-nondegenerate; let us study the consequences of
this condition. The equation of the tangent is of the form

dv = 2ℜ(Fzdz + Fζdζ) + Fudu.

The equation of the complex tangent is

dw = (Fzdz + Fζdζ)/(1− iFu).
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The Levi form is the restriction of the complex Hessian ∂∂̄(|z|2 + F ) to the complex tangent,
i.e., an Hermitian form on the space of variables (z, ζ) to which an Hermitian matrix of size 2×2
corresponds, namely, L(F ). Since F = O(3), it follows that this form has rank one at the origin,
and therefore, the condition of 2-nondegeneracy is reduced to the condition

detL(F ) = 0. (13)

Assume that the lower terms (up to the weight 9) of the equation of the hypersurface are
represented in our normal form, i.e.,

v = |z|2 + 2ℜ(z2ζ̄) +N4 +N5 +N6 +N7 +N8 +N9 +O(10). (14)

It is clear that the (m−2)nd component of (13) does not depend on the components of the equation
whose weights exceed m. Distinguishing in (13) the components of weights 2, 3, 4, 5, 6, and 7 and
equating them to zero, we obtain conditions on the form of the terms N4, N5, N6, N7, N8, N9.
The computer-aided calculations from [3] so that

N4 = 4|z|2|ζ|2, N5 = 2ℜ(4z2ζζ̄2 + β1z
3z̄ζ̄ + β2z

4ζ̄), (15)

where β1 and β2 real. The components of the subsequent weights have
a specific form; they depend on an increasing family of parameters [3].

3. LOWER-ORDER COMPONENTS OF AN AUTOMORPHISM

Our next objective is the investigation of the lower-order components of an automorphism of
a hypersurface of the form

v = zz̄ + 2ℜ(z2ζ̄) + 4|z|2|ζ|2 +N5 +N6 +N7 +N8 + · · · = N(z, z̄, ζ, ζ̄, u) (16)

represented by an equation in normal form, taking into account the restrictions obtained from the
condition of uniform Levi-degeneracy. We are interested in the 8-jet of an automorphism preserving
the origin, namely,

w → g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8 +O(9) = g(z, ζ, w),

z → f1 + f2 + f3 + f4 + f5 + f6 + f7 +O(8) = f(z, ζ, w),

ζ → h1 + h2 + h3 + h4 + h5 + h6 +O(7) = h(z, ζ, w).

(17)

The fact that this mapping is an automorphism means precisely that

Φ(z, z̄, ζ, ζ̄, u) = −ℑg +N(f, f̄ , h, h̄,ℜg) (18)

= −ℑg + ff̄ + 2ℜ(f2h̄) + 4|f |2|h|2+N5+N6+N7+N8+· · ·=0 for w = u+ iN.

This relation can be expanded in a sum of weight components,
∑

Φm. It is clear that the component
of weight m does not depend on (gµ, fµ−1, hµ−2) for µ > m. Let us single out the lower-order
components [3].

Weight 1. Φ1 = −ℑg1, which implies that g1 = 0.

Weight 2. Φ2 = −ℑg2 + |f1|2, which implies that

g2 = |λ|2w, f1 = λz,

where λ is a nonzero complex number.
Weight 3.

g3 = |λ|22iāzw, f2 = λ(2iā− b)z2 + aw), h1 =
λ

λ̄
(ζ + bz),

where a and b are complex parameters.
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Weight 4. We see that b = −ia, and also

g4 = |λ|2((A1w − 2ā2)z2w + (r + i|a|2)w2),

f3 = λ(A1z
3 + zw(r + iA2)− 2āζw),

h2 =
λ

λ̄

(
z2(A2 − 3/2|a|2 + iA3) + 2iāzp+

1

2
iĀ1w

)
,

where A1 is a complex parameter and A2 and A3 are real ones. We carry out the subsequent
evaluations under the assumption that the values of the parameters (λ, a, r) coincide with their
values for the identity mapping, namely,

λ = 1, a = 0, r = 0.

Weight 5. We obtain A1 = A2 = A3 = 0, which implies that

g1 + g2 + g3 + g4 = w, f1 + f2 + f3 = z, h1 + h2 = ζ,

and we also have
g5 = 2iB̄zw2, f4 = Bw2, h3 = −4B̄z3 − 4iBzw,

where B is a complex parameter.
Weight 6. We obtain B = 0, which implies that g5 = f4 = h3 = 0; we also have

g6 = C1z
2w2, f5 = 2C1z

3w + iC2zw
2, h4 = −2iC1z

4 + 2C2z
2w +

i

2
C̄1w

2,

where C1 is a complex parameter and C2 is a real one.
Weight 7. We obtain C1 = C2 = 0, which implies that g6 = f5 = h4 = 0; we also have

g7 = Dzw3, f6 = 2Dz2w2 +
i

2
D̄w3, h5 = −2iDz3w + D̄zw2,

where D is a complex parameter.
Weight 8. We obtain D = 0, which implies that g7 = f6 = h5 = 0; we also have

g8 = Ew4, f7 = 2Ezw3, h6 = −2iEz2w2,

where E is a real parameter.
Weight 9. We obtain E = 0, which implies that g8 = f7 = h6 = 0.
Finally, as an immediate consequence of Proposition (3.b), we obtain the following proposition.

Proposition 4. If z → f(z, ζ, w), ζ → h(z, ζ, w), w → g(z, ζ, w) is an automorphism of a
uniformly 2-nondegenerate hypersurfaces of the form (1) and if

∂f

∂z
(0, 0, 0) = 1,

∂f

∂w
(0, 0, 0) = 0, ℜ

(
∂2g

∂w2
(0, 0, 0)

)
= 0,

then this automorphism is the identity mapping, i.e., f = z, h = ζ, g = w.

Recall some well-known facts concerning nondegenerate hypersurfaces in C2. The hypersurface
Q = {v = |z|2} in C2 is the projective image of the standard sphere S = {|z|2 + |w|2 = 1}. The
hypersurface Q is holomorphically (to be more precise, affine) homogeneous, and the stabilizer of
the origin (of the point ξ = (0, 0)) of Autξ Q consists of the projective transformations of the form

z → λ(z + aw)

1− δ
, w → |λ|2w

1− δ
, δ = 2iāz + (r + i|a|2)w), (19)
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where λ ∈ C∗, a ∈ C, r ∈ R. Denote this mapping by χλar.
If (F,G) are the coordinate functions of this mapping, then

λ = F ′
z(0, 0), a =

F ′
w(0, 0)

F ′
z(0, 0)

, r =
ℜG′′

ww(0, 0)

|F ′
z(0, 0)|2

. (20)

If we use the weights [z] = [z̄] = 1 and [w] = [w̄] = 2, then every Levi-nondegenerate hypersurface
in C2 has a local equation of the form v = |z|2+O(6). If ψ = (f(z, w), g(z, w)) is an automorphism
(of the hypersurface) which preserves the origin and satisfies conditions similar to those in (20),
then ψ is defined uniquely by these conditions, and thus can be denoted by ψλar. The mapping
ψλar → χλar defines a faithful representation of the stabilizer of a point (in the automorphism
group of the hypersurface) in the stabilizer of a point of the sphere.

Suppose now that Γ is a germ, of a uniformly 2-nondegenerate hypersurface in C3, given by an
equation reduced to normal form up to the weight 9 inclusive. Let

ϕλar = (f(z, ζ, w), h(z, ζ, w), g(z, ζ, w))

be the (uniquely defined) automorphism preserving the origin and satisfying the conditions

λ = f ′z(0, 0, 0), a =
f ′w(0, 0, 0)

f ′z(0, 0, 0)
, r =

ℜg′′ww(0, 0, 0)

|f ′z(0, 0, 0)|2
. (21)

Then the following theorem holds.

Theorem 5. (a) The mapping ϕλar → χλar is a faithful representation of the stabilizer of the
origin of a uniformly 2-nondegenerate hypersurface of the form (16) (in C3) in the stabilizer of a
point of the sphere in C2.

(b) If the hypersurface is a light cone, which can be represented in the form [8]

ℑw =
|z|2 + ℜ(z2ζ̄)

1− |ζ|2
,

then the mapping given above defines an isomorphism of the stabilizer of a point of the cone and
the stabilizer of a point of the sphere.

Recall that the automorphism group of the light cone is described in detail in [8].
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