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Abstract—The model-surface method is applied to the study of real analytic submanifolds of
a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional
case; however, there are some peculiarities and specific difficulties. One of these peculiarities is
the existence of a model surface with the Levi–Tanaka algebra of infinite length.
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1. INTRODUCTION

In studying holomorphic maps of real submanifolds in complex spaces, just as in many other
fields of geometry, the main problems are grouped into three directions. These are classification,
invariants, and automorphisms. Among the approaches to these problems is a model-surface method.
The structural features of the relevant theory have finally crystallized in recent years.

Let us list the main features:

• The approach is local ; i.e., local analysis is primary to any global conclusions. The main
object of study is a germ of a manifold M at a point, Mξ, rather than the manifold itself.

• The approach is a coordinate one. It is assumed from the beginning that the surface rep-
resenting a germ is embedded in a complex space, which can be identified with a standard linear
finite-dimensional complex space C

N since the analysis is local. Then one can assume that the germ
is defined by its local equation. The model surface itself is constructed as a normalized lowest-order
term of the equation of the germ.

• The local technique is based on calculations with power series, either convergent or formal.

• The primary object in the analysis of automorphisms is the Lie algebra of germs of holomorphic
vector fields tangent to a germ of a manifold, i.e., the Lie algebra of infinitesimal automorphisms
of a germ. Conclusions concerning the family of holomorphic automorphisms of the germ that are
generated by these fields are made later on the basis of information on the structure of the algebra.

This general view on the theory allows one to conclude that the specific features of the theory
are the features of differential calculus adapted to the specific character of the problem; this differ-
ential calculus is definitely based on the coordinate analysis “in the small.” Being aimed at solving
geometric problems (holomorphic geometry of real submanifolds in a complex space), this theory
represents an analytic alternative to the modern coordinate-free geometric approaches.

Let us briefly sketch the method:

• Each germ Mξ is assigned its model surface Q(Mξ). The model surface is a holomorphically
homogeneous real algebraic surface.

• One formulates and proves a simple criterion saying that aut Q, the Lie algebra of infinitesimal
automorphisms of the model surface Q, is finite-dimensional if and only if the surface is completely
nondegenerate.
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MODEL-SURFACE METHOD 15

• One describes the algebra of infinitesimal automorphisms of the model surface Q. The vector
fields turn out to be polynomial, and the transformation group AutQ corresponding to this Lie
algebra turns out to be a Lie group acting in the whole space by birational transformations of
bounded degree.

• One proves that a holomorphic equivalence of germs induces a linear equivalence of their
model surfaces. In particular, the problem of classification of model surfaces is immersed in the
algebraic context of invariant theory.

• One proves an embedding theorem; i.e., one constructs a canonical faithful representation of
the stabilizer of a point as the Lie subalgebra of automorphisms autξ Mξ of a germ in the stabilizer
of its model surface aut0 Q(Mξ).

Now, let us see how this theory is transformed under the substitution of some other space for
the main structural element, the space C

N . In this paper, we take a complex separable Hilbert
space H as the basic space.

The main object of our study is a germ Mξ of a real analytic Hilbert submanifold M of a
complex Hilbert space at a point ξ. We begin with linear objects. In what follows, we assume that
all subspaces under consideration are closed and linear, and polylinear forms are continuous; the
case of finite-dimensional Hilbert spaces is not excluded.

Let H be a real Hilbert space and H be its complexification. There is an operator of complex
structure in H, the operator of multiplication by the imaginary unit, v → iv. Therefore, we can
write H = H ⊕ iH. Let HR be the realification of H; i.e., this is the same H but over the field of
real constants. It can be identified with H ⊕ H. Let L be a subspace in HR. The subspace L is
said to be generating if L + iL = HR, i.e., if the closure of the linear span of L and iL coincides
with HR. Denote L ∩ iL by Lc. It is clear that Lc is a complex subspace in H. Let N be some
direct complement of Lc to L. Then the fact that L is a generating subspace implies that the direct
decomposition HR = (Lc)R ⊕ N ⊕ iN is valid, as well as H = L ⊕ NC, where NC = N ⊕ iN .
The multiplication by i establishes an isomorphism between the complement of Lc to L and the
complement of L to HR. By the type of a generating subspace L we will mean a pair (n,K), where
n is the dimension of Lc as a complex subspace and K is the codimension of L in HR. Each of the
parameters may take both finite and infinite values.

Let f be a map of a domain D of a complex Hilbert space H1 into another complex Hilbert
space H2. We say that f is holomorphic if, in some closed circular neighborhood of every point a,
the map can be represented as the sum of a series,

f(z) = f0 + f1(z − a) + f2(z − a, z − a) + . . . + fm(z − a, . . . , z − a) + . . . ,

where fm is a continuous symmetric H2-valued polylinear form of m vector variables in H1, and the
series converges in the norm of the space H2. By definition, a neighborhood is circular if, together
with any of its points z, it contains all points of the form a + t(z − a) for all complex numbers t
with |t| ≤ 1. This definition is equivalent to the following: at every point of D, the map f has a
total differential that is a continuous complex linear map from H1 to H2. If we replace the spaces
and series in the first definition by real spaces and series, then such a map is said to be real analytic.
A map to the one-dimensional space C

1 is called a holomorphic function [5].
The series involved in the definition of a holomorphic or real analytic map is a series in ho-

mogeneous components, with the homogeneity understood as follows: if t ∈ C and we make the
transformation z → tz, then fm is multiplied by tm. Suppose that the space on which the forms
are defined is represented as a direct sum that generates a representation z = z1 + . . . + zs of the
variable. Then each term can be assigned a certain weight [zj ] = μj, and the homogeneity of fm

can be understood as follows: this component changes by a factor of tm after the transformation
z1 → tμ1z1, . . . , zs → tμszs. In this case we speak of weighted components.
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16 V.K. BELOSHAPKA

Let Mξ be a germ of an embedded real analytic submanifold of the space HR. Let L be the
tangent space to the germ at ξ. We will assume that L is a generating subspace of type (n,K);
in this case, we say that Mξ is a generating germ of type (n,K). The whole complex space is
decomposed into a direct sum H = L ⊕ NC, and, in accordance with this decomposition, every
element of the space is represented as z + w. Let us change the notation: Lc = Hz and NC = Hw;
now, z ∈ Hz, w = u + iv ∈ Hw, u ∈ N , and v ∈ N . We will assume that ξ is the origin (this can be
achieved by a shift). Then, in a neighborhood of the origin of the space H = Hz ⊕ Hw, the germ
can be defined by an equation

v = F (z, z̄, u),

where F is a real analytic map of a neighborhood of the origin of the space (Hz)R ⊕ (Hz)R ⊕ N
to the space N , with both F and dF vanishing at the origin. This is a direct corollary to the
implicit map theorem. Here one can use either real variables (x, y), with z = x + iy, or formal
variables (z, z̄), bearing in mind that F is a real map, i.e., F (z, z̄, u) = F (z̄, z, u).

2. HYPERSURFACES, K = 1

First, consider the case of codimension 1. So, n ≤ ∞ and K = 1; i.e., we deal with a germ of
type (∞, 1) of a real analytic hypersurface Γ in a complex Hilbert space. The space is the direct
sum H = Hz ⊕ C, and by its coordinates we will mean a pair (z,w), where z is a vector of the
space Hz and w = u + iv is a complex number. The equation of a germ has the form v = F (z, z̄, u),
where F is a real-valued function that is real analytic in a neighborhood of the origin and is such
that F and dF vanish at the origin. Let us assign weights to the variables as follows: [z] = 1 and
[w] = [u] = 2. Then the equation of the germ can be written as

v = F2,0,0(z, z) + F1,1,0(z, z̄) + F0,2,0(z̄, z̄) + O(3), (1)

where the terms are polylinear forms of their variables and O(m) stands for the sum of forms of
weight m and higher. Since F is real, the form F1,1,0(z, z̄) is Hermitian; denote this form by 〈z, z̄〉
and note that F2,0,0(z, z) + F0,2,0(z̄, z̄) = 2Re F2,0,0(z, z). Then, after the quadratic triangular
change of coordinates z → z, w → w + iF2,0,0(z, z), the equation reduces to

v = 〈z, z̄〉 + F3(z, z̄, u) + F4(z, z̄, u) + . . . . (2)

It is the quadratic hypersurface (quadric) Q = {v = 〈z, z̄〉} that is a model surface of the type
under consideration, and the form 〈z, z̄〉 is called a Levi form of the hypersurface Γ at the origin.
Such a form is said to be nondegenerate if it has no kernel, i.e., if the relation 〈z, ā〉 = 0 holds for
all z only when a = 0. In this case, the germ of the hypersurface is also said to be nondegenerate.

Real vector fields on the space H can be expressed in the following symbolic coordinate form:

2Re
(

f(z,w)
∂

∂z
+ g(z,w)

∂

∂w

)
,

where the coefficients f and g take values in Hz and C, respectively. Every such field generates a
local one-parameter group of transformations of the space H; moreover, if f and g are holomorphic,
then the field generates a one-parameter group of holomorphic transformations of the space [6].
Such vector fields are said to be holomorphic. A real field is a sum of a holomorphic and an
antiholomorphic term, each of which allows one to obtain the other by conjugation and thus to
reconstruct the entire field. Therefore, when expressing fields, we will write for short only the
holomorphic component. One can represent holomorphic fields as sums of terms of the form

fα(z, . . . , z)wβ ∂

∂z
and gγ(z, . . . , z)wδ ∂

∂w
,
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where f is an α-form and g is a γ-form. The differentiations can be assigned weights in the
following way: [

∂

∂z

]
= −1 and

[
∂

∂w

]
= −2.

Let us extend the weighted decomposition from series to vector fields; as a result, the Lie algebra
of vector fields turns into a graded Lie algebra decomposed as g = g−2 + g−1 + g0 + g1 + . . . .
Accordingly, every vector field can be decomposed into graded components: X = X−2 + X−1 +
X0 + X1 + . . . .

Let us formulate five propositions.
(a) If a field X = X−2 + X−1 + X0 + X1 + . . . belongs to autQ, then each of its components

belongs to this algebra, Xj ∈ autQ.
(b) If the form 〈z, z̄〉 is degenerate, then the decomposition g−2 + g−1 + g0 + g1 + . . . of the

algebra autQ contains nonzero components of all weights. If the form 〈z, z̄〉 is nondegenerate, then
its decomposition is given by aut Q = g−2 + g−1 + g0 + g1 + g2.

(c) If the form 〈z, z̄〉 is nondegenerate, then the components can be described explicitly:

g−2 =
{

2Re
(

q
∂

∂w

)}
,

g−1 =
{

2Re
(

p
∂

∂z
+ 2i〈z, p̄〉 ∂

∂w

)}
,

g0 =
{

2Re
(

Cz
∂

∂z
+ ρw

∂

∂w

)}
,

g1 =
{

2Re
((

aw + 2i〈z, ā〉z
) ∂

∂z
+ 2i〈z, ā〉w ∂

∂w

)}
,

g2 =
{

2Re
(

rwz
∂

∂z
+ rw2 ∂

∂w

)}
,

where q, r ∈ R, p, a ∈ Hz, C is a continuous linear operator on Hz, and ρ is a real number related
to C by the formula 2Re〈Cz, z̄〉 = ρ〈z, z̄〉.

The subgroup

Aut− Q =
{
z → z + p, w → w + 2i〈z, p̄〉 + (q + i〈p, p̄〉)

}
corresponding to the subalgebra g− = g−2 + g−1 acts transitively on Q by affine transformations of
the space. In the finite-dimensional case, this subgroup is known as the Heisenberg group.

For the subalgebra aut0 Q = g0 + g1 + g2, the corresponding subgroup consists of the automor-
phisms of Q that leave the origin fixed (the stabilizer of the origin). The subalgebra g0 generates
a subgroup in the stabilizer that consists of linear automorphisms and is a connected component
of the group AutL Q of all linear automorphisms of Q preserving the origin. This group can be
described as z → Cz, w → ρw, where C is a continuous invertible linear operator on the space Hz,
i.e., C ∈ GL(Hz), satisfying the relation 〈Cz,Cz〉 = ρ〈z, z̄〉 for some nonzero real factor ρ. The
component g0 is the Lie algebra of this linear group.

The subgroup Aut+ Q corresponding to the subalgebra g+ = g1 + g2 is composed of nonlinear
automorphisms of Q that leave the origin fixed. The group Aut+ Q consists of linear fractional
transformations of H of the form

(z,w) → (z + aw,w)
1 −

(
2i〈z, ā〉 + (r + i〈a, ā〉)w

) .
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18 V.K. BELOSHAPKA

Here we should make the following general remark. In the finite-dimensional situation, i.e., when
the basic space is finite-dimensional, every graded component is also finite-dimensional. Therefore,
the algebra is finite-dimensional if and only if the decomposition autQ =

∑
gj contains only

a finite number of nonzero components (finite grading). This assertion can be reformulated as
follows: the elements of aut Q are fields with polynomial coefficients of bounded degree. In this
case, the decomposition looks like aut Q = g−2 + g−1 + g0 + g1 + . . . + gd, where d is the number
of the leading nonzero component. When we pass from a finite-dimensional space to an infinite-
dimensional one, the parameters remain formally the same but are not finite-dimensional any longer.
For example, the parameters p and a, which were the vectors of a finite-dimensional space, become
elements of Hz; and the parameter C, which was a linear operator on a finite-dimensional space,
is now a linear operator on Hz. Therefore, when dealing with infinite-dimensional situations, it is
natural to consider finite grading as analog of finite dimensionality.

(d) Let Γ1
ξ1 and Γ2

ξ2 be two germs and φ be a holomorphic invertible map of the former onto the
latter, φ

(
Γ1

ξ1

)
= Γ2

ξ2 , φ(ξ) = ξ̃. Then the linear part (differential) of the map φ at the point ξ1 has
the form

z → Cz + aw, w → bz + ρw.

Let us write the local equations of the germs as

v = 〈z, z̄〉1 + O(3) and v = 〈z, z̄〉2 + O(3).

The fact that the map sends the first surface to the second can be expressed as an identity. Sepa-
rating the components of weights 1 and 2 in this identity, we find that b = 0 and

〈z, z̄〉2 = ρ〈C−1z,C−1z〉1. (3)

This implies that the linear map z → Cz, w → ρw sends the first model surface Q1 = {v = 〈z, z̄〉1}
to the second Q2 = {v = 〈z, z̄〉2}; i.e., the holomorphic equivalence of germs generates the linear
equivalence of their model surfaces.

(e) Let X = X0 + X1 + X2 + X3 + . . . be a field in aut0 Γ0 for a nondegenerate hypersurface
Γ = {v = 〈z, z̄〉 + O(3)}, and let Q = {v = 〈z, z̄〉} be its model surface. Then the map ψ : X0 +
X1 + X2 + X3 + . . . → X0 + X1 + X2 is a faithful representation of aut0 Γ0 in aut0 Q. In particular,
this allows us to argue that the maps of nondegenerate germs are uniquely defined by their 2-jets.

Thus, all the proofs are carried over without changes. Note that the only difference between the
finite-dimensional case and the infinite-dimensional one is that, instead of finite dimensionality of
the Lie algebra, we speak in the latter case of the finiteness of its graded decomposition.

3. QUADRICS, l = 2

Now, suppose that the complement Hw has an arbitrary finite or infinite dimension K. The
scalar variable w becomes a finite- or infinite-dimensional vector variable. The Hermitian form 〈z, z̄〉
now also takes values in the real Hilbert space N .

How do propositions (a)–(e) change?
Propositions (a) and (d) carry over without changes. Propositions (b) and (e) do not change ei-

ther, i.e., can be repeated word for word; however, the finite dimensionality criterion is reformulated
as follows.

A form is said to be nondegenerate if the following two generally independent conditions hold :

(1) The kernel is trivial ; i.e., the relation 〈z, ā〉 = 0 is valid for all z only if a = 0.
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(2) The image is full-dimensional ; i.e., if α is a linear functional in N and α(〈z, z̄〉) = 0 for
all z in Hz, then α = 0.

If K is finite, then the second condition implies the linear independence of the coordinate
Hermitian forms.

To obtain proposition (b), one can modify the finite-dimensional arguments as follows.

Proof of proposition (b). Writing the condition for the holomorphic tangent vector field

2Re
(

f(z,w)
∂

∂z
+ g(z,w)

∂

∂w

)
,

we obtain the relation

Im g(z, u + i〈z, z̄〉) = 2Re〈f(z, u + i〈z, z̄〉), z̄〉. (4)

We represent the coefficients of the fields as sums of components: f(z,w) =
∑

fj(z,w) and g(z,w) =∑
gj(z,w). Equating the components of (4) of bidegrees (j, 0) in (z, z̄), we find that

f(z, u) = a(u) + C(u)z + A(u, z, z) and g(z, u) = b(u) + 2i〈z, ā(u)〉

since the Hermitian form is nondegenerate; here Cz is linear in z and A is a quadratic form of z.
Substituting these expressions into (4), we conclude that

〈A(u, z, z), z̄〉 = 2i〈z,Δā(u)〉〈z,Δ2ā(u)〉, Im b(u) = 0, Δ3b(u) = 0,

2Re〈C(u)z, z̄〉 = Δb(u), 2 Im〈C(u)z, z̄〉 = 0,
(5)

where Δ is the value of the differential with respect to u on the form 〈z, z̄〉; i.e., Δφ(u) =
φ′

u(u)(〈z, z̄〉). From the relations obtained, we can easily derive

〈Δ2C(u)z, z̄〉 = 0. (6)

Now, since the kernel of the form 〈z, z̄〉 is trivial, we construct an expanding sequence of finite-
dimensional subspaces of the space Z,

Z1 ⊂ Z2 ⊂ . . . Zj ⊂ . . . ,

such that the restriction of the Hermitian form 〈z, z̄〉 to each of these subspaces is nondegenerate
and the closure of these subspaces gives the whole Z. These subspaces correspond to an expanding
sequence of finite-dimensional subspaces of the space N ,

N1 ⊂ N2 ⊂ . . . Nj ⊂ . . . ,

where Nj is the linear span of the image of the space Zj under the map z �→ 〈z, z̄〉. Due to the
second nondegeneracy condition for the form, the closure of these subspaces gives the whole N .
Standard arguments based on the exponential representation theorem allow one to find from (6)
that the restriction of C(u)z to the subspace Zj ⊕ Nj depends linearly on u. Now, passing to the
limit and using the continuity, we find that this is also valid for Z ⊕ N . Then, standard reasoning
shows that a is linear in u, A is independent of u, and b depends quadratically on u. �

We should make corrections to the description of the Lie algebra of the model surface, i.e., to
proposition (c); however, for the infinite-dimensional situation, these corrections formally coincide
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20 V.K. BELOSHAPKA

with those that arise in the finite-dimensional case for K > 1. Namely,

g−2 =
{

2Re
(

q
∂

∂w

)}
,

g−1 =
{

2Re
(

p
∂

∂z
+ 2i〈z, p̄〉 ∂

∂w

)}
,

g0 =
{

2Re
(

Cz
∂

∂z
+ ρw

∂

∂w

)}
, where 2Re〈Cz, z̄〉 = ρ〈z, z̄〉,

g1 =
{

2Re
(

(aw + A(z, z))
∂

∂z
+ 2i〈z, āw〉 ∂

∂w

)}
, where 〈A(z, z), z̄〉 = 2i〈z, ā〈z, z̄〉〉,

g2 =
{

2Re
(

B(z,w)
∂

∂z
+ r(w,w)

∂

∂w

)}
, where Re〈B(z, u), z̄〉 = r(〈z, z̄〉, u)

and Im〈B(z, 〈z, z̄〉), z̄〉 = 0.

Here the parameters have an obvious meaning: q ∈ N , p ∈ Hz, C ∈ gl(Hz), ρ ∈ gl(N), the
parameter A is an Hz-valued quadratic form on Hz ⊕ Hz, the parameter B is an Hw-valued bilinear
form on Hz ⊕ Hw, and the parameter r is an N -valued quadratic form on N ⊕ N .

The propositions concerning the structure of the transformation groups Aut− Q and Aut0 Q
remain the same. However, the group Aut+ Q is no longer a subgroup of the group of projective
transformations. One can show that any transformation in Aut+ Q is expressible in terms of op-
erators inverse to polynomial transformations of bounded degree. The arguments that allow one
to show this seem to be due to W. Kaup [9], and the first who applied them to the description
of automorphisms of quadratic model surfaces was Tumanov [8, 10]. If the codimension is finite,
then, just as in the finite-dimensional case, this implies birationality with a bound on the degree;
however, one cannot assert this if the codimension is infinite.

4. MODEL SURFACES FOR l ≥ 3

In the finite-dimensional case, i.e., for finite n, there is a natural restriction on the application
of such quadratic model surfaces. This is associated with the fact that the dimension of the space
of Hermitian forms on a complex space of dimension n is n2. If K > n2, then there are no
nondegenerate model surfaces for this type of germs. In the case of an infinite-dimensional variable z,
such a formal obstacle to the existence of nondegenerate quadratic (i.e., described above) model
surfaces disappears. However, a phenomenon analogous to the violation of the inequality K ≤ n2

may occur in this case as well. Namely, it may happen that the closure of all Hermitian forms is
a proper subspace in the space of the real complement N . Then we denote this subspace by N2,
its complexification by Hw2 , and the corresponding variable by w2 = u2 + iv2, and pass to the
next step. The whole construction is thoroughly described in [2] and is of recursive character. The
number of steps is described by a new parameter l. At each step, we increase l by one and

• consider the space of homogeneous real (scalar rather than vector-valued) polynomials of the
next (l + 1)th weight Fl+1;

• construct a direct decomposition of this space, Fl+1 = Rl+1 ⊕ Nl+1, and introduce a new
variable wl+1 = ul+1 + ivl+1 which is a vector of the space Hwl+1

, the complexification of the
space Nl+1, and which is assigned the weight l + 1, with vl+1 ∈ Nl+1. In addition, we perform
the next step of reducing the local equations of the germ and write equations corresponding
to the new group of variables. As a result, the equations take the form

v2 = F2 + O(3), . . . , vl+1 = Fl+1 + O(l + 2), ṽ = F̃ ,
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where ṽ is a coordinate of the space Ñ , a direct complement of N2 ⊕ . . . ⊕ Nl ⊕ Nl+1

to N ;
• verify that we have not exhausted the entire space N . If Ñ = 0, then the process terminates,

while if Ñ 
= 0, then the process continues further.

Let us write what is obtained for l = 7. Here, for brevity, we denote the forms of degree a in x
and b in y by 〈xayb〉:

v2 = 〈zz̄〉,

v3 = 〈z2z̄〉 + 〈zz̄2〉,

v4 = 〈z3z̄〉 + 〈z2z̄2〉 + 〈zz̄2〉,

v5 = 〈z4z̄〉 + 〈z3z̄2〉 + 〈z2z̄3〉 + 〈zz̄4〉 + 〈z2z̄u2〉 + 〈zz̄2u2〉,

v6 = 〈z5z̄〉 + 〈z4z̄2〉 + 〈z3z̄3〉 + 〈z2z̄4〉 + 〈zz̄5〉 + 〈z3z̄u2〉 + 〈z2z̄2u2〉 + 〈zz̄3u2〉,

v7 = 〈z6z̄〉 + 〈z5z̄2〉 + 〈z4z̄3〉 + 〈z3z̄4〉 + 〈z2z̄5〉 + 〈zz̄6〉 + 〈z4z̄u2〉 + 〈z3z̄2u2〉

+ 〈z2z̄3u2〉 + 〈zz̄4u2〉 + 〈z2z̄u2
2〉 + 〈zz̄2u2

2〉 + 〈z3z̄u3〉 + 〈z2z̄2u3〉 + 〈zz̄3u3〉.

In the finite-dimensional case, i.e., when both n and K are finite, this process will necessarily
terminate after a finite number of steps. The point is that the dimensions of the spaces Nj increase
rapidly. For instance, dim N2 = n2, dimN3 = n2(n + 1), etc. As for the case K = ∞, the process
may not terminate at all. This means that the right-hand sides of the normalized equations of the
germ contain polynomials of all weights. In this case, we assume that l = ∞, and if n is finite, then
the dimensions of all complements Nj are also finite, and the parameter l for an infinite value of K
cannot be finite.

Now, let us see into what the main propositions are transformed. Proposition (a) carries over
without changes.

(a) If a field X = X−2 + X−1 + X0 + X1 + . . . belongs to autQ, then each of its components
belongs to this algebra, Xj ∈ autQ.

For l > 2, the nondegeneracy condition is simplified. In this case, the equations of the model
surface begin with an equation v2 = 〈z, z̄〉, where the form 〈z, z̄〉 takes values in a space N2 isomor-
phic to the space of all scalar Hermitian forms; the presence of a nontrivial kernel with respect to
the forms of all weights implies, in particular, that the condition 〈z, ā〉 = 0 holds for some nonzero
a ∈ Hz. Let us represent the space Hz as a direct sum of the one-dimensional space generated by a
and some complement; accordingly, any vector in Hz can be expressed as z = z1 + z2; in this case,
the form is decomposed as 〈z, z̄〉 = 〈z1, z̄1〉 + 〈z1, z̄2〉 + 〈z2, z̄1〉 + 〈z2, z̄2〉. Now, on N2 consider a
nonzero linear functional α such that α(〈z2, z̄2〉) = 0; then α(〈z, z̄〉) = 0, which violates the second
nondegeneracy condition. Thus, for l > 2, the first nondegeneracy condition (the absence of a
kernel) is absorbed by the second condition (the full dimensionality of the image). So, now the
nondegeneracy condition for the model surface v = Φ(z, z̄, u) is that the image is full-dimensional.

A germ v = F (z, z̄, u) is said to be nondegenerate if the model surface v = Φ(z, z̄, u) obtained
from this germ by the above-described procedure is nondegenerate. The nondegeneracy of a model
surface means the full dimensionality of the image of the map Φ; i.e., if α(Φ(z, z̄, u)) = 0, then this
linear functional on N vanishes. If K is finite, then this is just the condition of linear independence
of the coordinate forms.

The weighted decomposition obtained in constructing a model surface induces weighted decom-
positions for all fields. Here one should distinguish between the cases of finite and infinite l. If l is
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finite, then the fields are decomposed as

X = X−l + X−l+1 + . . . + X0 + X1 + . . . ,

which corresponds to a decomposition

aut Q = g−l + g−l+1 + . . . + g0 + g1 + . . .

of the Lie algebra of the model surface. If l = ∞, then this decomposition is unbounded on the
negative side as well.

Now let us turn to analogs of propositions (b) and (c).
Let g− be the sum of all negative components of g. The group Aut− Q corresponding to this Lie

subalgebra is a group of triangular polynomial transformations of the space that acts transitively
on Q, has no fixed points, and can be identified with Q. If l is finite, then g− = g−l + . . . + g−1,
and the weight of the leading component of the polynomials in the corresponding group is l − 1.
If l = ∞, then the degrees of the polynomials in the blocks indefinitely increase. This group is a
natural analog of the Heisenberg group.

The subalgebra g0 generates an AutL-subgroup of the group GL(Hz) ⊕ GL(N); this subgroup
is distinguished by the condition Φ(Cz,Cz, ρu) = ρΦ(z, z, u), which implies that ρ has a block
structure corresponding to the decomposition N = N2 ⊕ . . . ⊕ Nl.

The situation with g+ is rather paradoxical. There is no example for l ≥ 3 with g+ 
= 0. This
pertains to both finite-dimensional and infinite-dimensional situations. In some finite-dimensional
situations, the triviality of g+ has been proved. For example, it was proved by Kossovskii [7] for
all finite-dimensional model surfaces in the case of l = 3. The fact that g+ is finitely graded,
i.e., that it consists of a finite number of components, has been proved under the nondegeneracy
assumption for all finite-dimensional situations. This is a corollary to Zaitsev’s theorem [11]. Neither
Kossovskii’s nor Zaitsev’s theorem extends directly to the infinite-dimensional situation. However,
the direct analysis performed in [3] and [4] for the defining relations allows one to show, using the
technique described above for l = 2, the following in the infinite-dimensional situation. For l = 3
the subalgebra g+ is limited to g1 + . . . + g6, and for l = 4 we have g+ = g1. In fact, the assertion
g+ = g1 was proved in [4] for an arbitrary l ≥ 4, but this was done for “rigid” surfaces, i.e., for
those surfaces whose equations do not contain u = Rew on the right-hand side. For such surfaces,
the assertion carries over to the infinite-dimensional situation. However, for l ≥ 5, a general model
surface does not satisfy this condition. Zaitsev’s theorem says nothing about graded components.
This is a theorem on unique dependence of a germ of a holomorphic map on its finite jet. The main
assumption is that the type of a germ of a surface is finite. The main tools are the technique of Segre
surfaces and the implicit function theorem. If an analog of Zaitsev’s theorem holds in the infinite-
dimensional situation, then, by virtue of (a), it immediately implies the finite grading. Zaitsev’s
theorem gives an estimate for the number of the jet for which such a uniqueness theorem holds.
However, this estimate, proved for a finite-dimensional space, increases with the dimension. This
fact casts doubts on the possibility of adapting Zaitsev’s proof to the infinite-dimensional situation.

So, we can formulate two conjectures for a nondegenerate model surface: the minimum and
maximum conjectures. The minimum conjecture has been proved for the finite-dimensional case,
while the maximum conjecture remains open in both situations.

Minimum conjecture. If l is finite, then g+ is finitely graded.

Maximum conjecture. If 3 ≤ l < ∞ is finite, then g+ = 0.

(d) This proposition remains almost unchanged. Namely, if there is a holomorphic equivalence of
germs, then, from the linear part of this map, one somehow derives a set of invertible linear operators
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C, ρ2, . . . , ρl that act with respect to the corresponding variables and give a linear equivalence of
the model surfaces.

(e) In the case of finite grading, a faithful representation of the stabilizer of a nondegenerate
germ, aut0 M0, in the stabilizer of its model surface, aut0 Q, is constructed in the same way,

ψ : X0 + X1 + . . . + Xd + . . . → X0 + . . . + Xd.

All these propositions for infinite l have the same formulations as in the finite-dimensional
situation. However, in the finite-dimensional situation, the infinite value of l is impossible. Model
surfaces with infinite values of the parameter l are a new object that demands attention. The
simplest situation with l = ∞ is given by nondegenerate surfaces with one-dimensional complex
tangent n = 1 and infinite codimension K = ∞.

In this paper, the nondegeneracy condition is presented in a purely coordinate form. However,
this condition can also be formulated in a coordinate-free form. The correspondence between our
nondegeneracy condition (complete nondegeneracy) and some coordinate-free conditions is pointed
out in [2]; the infinite-dimensional specificity has no effect on this correspondence. In particular,
the parameter l in these terms is the length of the Levi–Tanaka algebra.

In the present paper, we have discussed only the main structural components of the theory.
There are a plenty of more special subjects and constructions that can also be brought to the
infinite-dimensional situation [1]. Here are a couple of issues:

• If the spaces in which the surfaces are situated have a certain additional algebraic structure,
then such spaces may admit a more special theory. For example, if the basic real Hilbert space H
possesses the structure of a real commutative algebra, then a specific class of quadrics arises; in the
finite-dimensional case, such quadrics were considered in [12].

• In the finite-dimensional case, quadratic model surfaces of codimension 2 were classified and
studied in [13]. What is the case when n = ∞?

The basis of this theory is the interplay between real and complex structures, as well as the
application of power series. Therefore, there is a plenty of possibilities for generalizations: transition
from Hilbert spaces to Banach spaces and, further, to Fréchet spaces; analysis of noncommutative
situations, for example, submanifolds in a superspace; etc.

ACKNOWLEDGMENTS

This work was completed in Canberra, at the Australian National University, where the author
was kindly invited by Professor A. Isaev.

While working on the article, I had fruitful discussions with O. Beloshapka, E.A. Gorin, A. Isaev,
I. Kossovskii, and O.G. Smolyanov, and I am genuinely grateful to them for these discussions.

This work was supported by the Russian Foundation for Basic Research, project nos. 11-01-
00495-a and 11-01-12033-ofi-m.

REFERENCES
1. V. K. Beloshapka, “Real Submanifolds in Complex Space: Polynomial Models, Automorphisms, and Classification

Problems,” Usp. Mat. Nauk 57 (1), 3–44 (2002) [Russ. Math. Surv. 57, 1–41 (2002)].
2. V. K. Beloshapka, “Universal Models for Real Submanifolds,” Mat. Zametki 75 (4), 507–522 (2004) [Math. Notes

75, 475–488 (2004)].
3. V. K. Beloshapka, “A Cubic Model of a Real Variety,” Mat. Zametki 70 (4), 503–519 (2001) [Math. Notes 70,

457–470 (2001)].
4. V. K. Beloshapka, “Polynomial Models of Real Manifolds,” Izv. Ross. Akad. Nauk, Ser. Mat. 65 (4), 3–20 (2001)

[Izv. Math. 65, 641–657 (2001)].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 279 2012



24 V.K. BELOSHAPKA

5. J. Mujica, Complex Analysis in Banach Spaces: Holomorphic Functions and Domains of Holomorphy in Finite
and Infinite Dimensions (North-Holland, Amsterdam, 1986), North-Holland Math. Stud. 120.
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