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ON THE DIMENSION OF TH E G ROUP OF AUTOMORPHISMS
OF AN ANALYTIC HYPERSURFACE

UDC 517.5

V. K. BELOSAPKA

Abstract. Let Μ be a nondegenerate real analytic hypersurface in C , let ξ €Ε Μ, and
let Gg consist of the automorphisms of Μ fixing the point %. Then, as follows from a theorem
of Moser, the real dimension of Gg does not exceed 5. Here is is shown that 1) dimensions 2,
3, and 4 cannot be realized, but for 0, 1, and 5 examples are given; 2) if the point ξ is not
umbilical, then G^ consists of not more than two mappings.

Bibliography: 4 titles.

Introduction
In this paper we study groups of automorphisms of real analytic hypersurfaces. Elie

Cartan [1] observed that from results of Tresse [2] it follows that if the group of automor 
phisms of a real hypersurface in C 2 contains a family of more than three parameters, then it
depends on eight real parameters. Using the theorem of Moser on reducing a hypersurface to
normal form [3], we obtain the following results in this direction.

TH EOREM 1. Let Μ be a nondegenerate real analytic hypersurface in C", let ξ ε Μ,
and let G^ be the stability group of the point ξ, i.e. G* consists of the automorphisms of Μ
leaving ξ fixed. Then the real dimension of G^ cannot equal n2.

From Moser's theorem it follows that this dimension is no larger than n2 +  1.

TH EOREM 2. Let Μ be a nondegenerate real analytic hypersurface in C2, and let
% G  M. If dim R G^ > 1, then the hypersurface Μ is spherical, and consequently dim R G ? =  5.

Theorem 2 gives a complete description of the dimension of stability groups of real an 
alytic hypersurfaces in C 2. Moser's theorem admits the following possibilities for the dimen 
sion of such groups: 0, 1,2, 3, 4, and 5. Dimension 5 is realized by the hyperquadric

Dimensions 4, 3, and 2 are forbidden by Theorem 2. Dimension 1 is realized by the

1980 Mathematics Subject Classification. Primary 32C05, 53A55.

Copyright © 1980, American Mathematical Society

223



224 V. Κ. BELOSAPKA

hypersurface

{(z, u +  ii>)e= C2: υ =  | ζ | 2 +  | ζ | 8 } .

Dimension zero is the general case (see Theorem 3).
In the original version of this article Theorem 2 allowed dimension 2. A. V. Loboda

observed that for dimension 2 to be realized it is necessary that the parameter λ be free, but
this means that the polynomial He has a very special form, which does not allow any freedom
to the parameter a (see §3, p. 235). The author thanks him for this important remark.

TH EOREM 3. Let Μ be a nondegenerate real analytic hypersurface in C 2 and let
{cmn(n)} be the coefficients of its normal form in a neighborhood of a point ξ EM. If the
point ξ is not umbilical, i.e. c 4 2(0) φ 0, then G^ consists of not more than two mappings.

If in addition ( c 4 2 · c2S + 3c 2 4 · c43)\ u=0 Φ 0, then G ? contains no mapping besides
the identity.

Of analogous earlier results, that of Burns, Shnider, and Wells [4] should be mentioned.
They showed that in the space of functions defining strongly pseudoconvex domains, the set
of functions defining domains without automorphisms is a set of Baire second category.

The author thanks his scientific advisor, A. G. VituSkin.

§ 1. Study of the initial components of a mapping
We consider in the complex linear space C" +  1 (n > 1) with coordinate functions

z 1 , . . . , z", w =  u + iv a real analytic hypersurface M. Let ρ be its defining function; that
is, ρ is a real valued real analytic function in a domain V C Cn+1 such that Μ =  {ξ e V:
P(?) =  0}, where grad ρ Φ 0 at points of M. Further let 0 G  V and p(0) =  0; that is, Μ
contains the origin. In a neighborhood of 0 the equation p ( |) =  0 may be solved for one of
the real coordinates, and after a linear change the equation of Μ takes the form

v =  F(z,z;u), (1)

where ζ = (ζ1, . . . , ζ") and F is a real valued real analytic function with dF\ Q = 0.
We make the following assumption on the hypersurface M. Its Levi form at 0

( z, z > =  2 / ^β2"?» w h e r e

is nondegenerate, i.e. d e t ^ ^ ) Φ 0.
In the space of convergent power series in the variables ζ, ζ , and u we introduce the

following decomposition:

G(z,z; u) =  ^Ou(z,~z; u),
k.l

where Gkl satisfies

txz, t2z; u) =  i&Gki (z, z; u)
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for all complex numbers ij and f2. We will call this decomposition the ^ decomposition, and
Gkl the (k, 1} h component of G.

Let δ be the space of convergent real power series in z, z, and u without constant or
linear terms, 9Ϊ the subspace consisting of series of the form

R =  2 Ru +  ra <z, 2> +  (r10 +  r01) (z, z)2 +  r00 <z, z)8,
mIn(A,/ Xl

and 9i the subspace defined by

Sl =  {7VG 5:7Vfc/  =  O,if m i n ( As , / Xl , t r t f n =  t r a Ww =  t r 8 ^ =  0}.

The operator tr is a linear operator on the space δ taking series of type (k, T) to series of
type (k — 1, /  — 1) (for the definition of this operator see [3], p. 232). The properties of
the operator tr which we will need we state as the following lemma.

LEMMA 1 (see [3], p. 233). a) 3 =  9f θ sJi, i.e. every series F e 5 can be uniquely
represented in the form F =  R + N, where R G  91 and Ν € 9ί.

b) This decomposition is invariant with respect to linear mappings preserving the form
<z, z>. In particular, if N(z, z) e 9ΐ and % G  SU(n), then N{%z, &z) G 31.

c) The subspace 9i is an ideal of j$.

We also remark that for η = 1 the condition tr N22 =  t r 2 N32 =  t r 3 7V33 =  0 means
that N22 = N32 = N33 = 0.

By making in a neighborhood of 0 a holomorphic change of coordinates preserving the
form of equation (1), we may change the function F. We state a fundamental result of Moser.

LEMMA 2 (see [3], p. 234, Theorem 2.2). By a holomorphic change of coordinates the
equation of the hypersurface Μ may be brought to the form

v = (z,z} + N (z, z; u), where Ne=3l. (2)

This change is called the reduction of Μ to normal form.
Now let the hypersurface Μ be reduced to normal form and let (2) be its equation.

Further, let h be an automorphism of this hypersurface leaving the origin fixed, i.e.
h: V—* C" +  1 is a holomorphic mapping such that

det / i ' l 0= ^0, (3)

A( 0 ) = 0 , (4)

h(M)f]V<=:M. (5)

The first η coordinates of the function h are denoted by / , and the last is denoted by
g, i.e. h = ( p . Then from (5) follows the identity

=  (f(z, u + t « e , z) + N)), f(z,u + i((z, z)
Ν{f (ζ, u +  i((



226 V. Κ. BELOSAPKA

This identity is the analytic expression of the fact that when the argument of h satisfies (2),
the value of h also satisfies (2). In order to make the calculations connected with this identity
manageable, we introduce the following decomposition of the space 3 :

F(z, z; u)=^Fk(z,z; u),
k

where

Fk(tz, tz;fu)=tkFk{z,z;u)

for all complex numbers t. We call this decomposition the ^ decomposition. We introduce an
analogous decomposition of the space of convergent power series in ζ and w:

where the polynomials gk satisfy

gk(tz, ^ ) =  ^ ( 2 , o ; )

for all complex numbers t.
Equation (2) is rewritten as

v= (z, z)+ ^Hk(z, z;u),
k

where Hk is the fcth e component of the series N. From the condition Ν Ε 9ΐ it follows
that the first component of TV which can be nonvanishing is H^ = N22(z, I), and H6 when
η = 1. We rewrite (6) in this notation:

 f ( / ( z , u + i ( ( ζ , ζ) + Η,+ . . . ) ) , f(z,u + i {{ζ, ζ) + Η,+ . . . ) ) >

+ . . . ) ) + · • · = 0. ( 7)

We consider the hyperquadric

This surface is transformed via the linear fractional mapping

κι +  i

into the surface <Z, Z> +  WW = 1, which, if <z, z> =  z1!1 + •  •  •  + znz", is the unit sphere
i n C " + 1 .

The group of automorphisms of S  leaving 0 fixed consists of the linear fractional map 
pings
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of the form
f   λ'%' (ζ +  aw)/A, g* =  it ' | λ'|» w/ A,

(8)
Δ =  1   [2i<z, a') +  (r' +  t (a ' , a '» a»],

where λ' G  C1 — {0}, η =  ±1 and ^ ' G  5ί/ («, π), i.e. ^ ' is a linear transformation such
t h a t ( ^ r ' z , %'z) =  π<ζ, z> and det <2τ' =  1, β ' e C ", r ' e R 1 (see [3] , p. 225).

We remark that if hs is an automorphism of S, then we have the identity, analogous to

(7),
Re ig* (z, u +  i (z, z» +  ( f (z, u +  t (z, z», f (z, u +  i (2, z»> =  0. (9)

We will view (7) as an equation for the unknown mapping h. Separating the e compon 
ents of this identity and successively setting them equal to zero, we obtain equations for the
successive e components of h.

The equations obtained from the initial components of (7) turn out to be insufficient
for a unique determination of the corresponding components of h. It becomes necessary to
introduce parameters. The aim of this section is to show that if these parameters are intro 
duced in a manner compatible with the system of parameters giving the automorphisms of S,
then the initial components of h turn out to be equal to the corresponding components of W.

Turning now to the calculations, we denote the &th e component of (7) by ΦΙί. We have
4>fc =  0, k = 0, 1, 2, . . ..

First step: Φι = Re igx, gx =  otz. We obtain α =  0, i.e. £ j =  0.
Second step: Φ 2 =  Re(ig2 + < / p / 1> )Ιυ= (Ζ ;Ζ> , ίλ =  Az and g2 = aw + β(ζ), where A

is a linear operator on C", a e C 1, and β is a quadratic form in z. Substituting, we obtain

Φ 2 =  —I m a · M—Re cc<z, z) + Re ίβ (ζ) +  (Az, Az).
Separating the e components of Φ 2 , we find

(2.0) β ( ζ ) = 0 ,
(1.1) (Az, Az}—Re a(z, z>= 0,
(0,0) Ima= 0.

Therefore we may write fx =  \%ζ and g2 = π |λ|2νν, where λ €= C1, π =  ±1 and
% G  SU(n, π) (see (8)).

We note that if λ =  0, then det h'\ Q = 0, so from (3) it follows that λ Φ 0.
For the sequel we need the following fact.

LEMMA 3. Let φ(ζ) and \p(z) be two holomorphic vector valued functions of z 1 , . . . , 2".
Then from the identity (φ(ζ), ζ) =  <ψ(ζ), ζ> is follows that φ(ζ) =  ψ (ζ).

P R O O F . We have <(<p — ΨΧζ), ζ> =  0, i.e.

2
α, β

Differentiating with respect to z | 3 0 ) We obtain
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Writing out this identity for β0 = 1, . . . , η, we obtain a linear system in (ψ — ψ)(ζ). Its
determinant d e t ^ ^ ) Φ 0, and so (ψ — ΨΧΖ) =  0. The lemma is proved.

Third step: Φ 3 =  Re(ig3 + 2(f2, / , »Ιϋ= < 2 > ζ> , f2 =  A(z) + Bw and g3 =  wl(z) + β(ζ),
where A(z) is a vector valued quadratic form  ηζ,Β & C", l(z) is a linear form and β(ζ) is a
cubic form in z.

We represent / (z) as (ζ, α), where a £ C " . Substituting, we obtain

Φ 3 —R e ( i ( u + i < z , 2»< 2 , α> +  ίβ(2) +2(Α(ζ),

+2u(B,

We separate into e components:

(3,0) β ( ζ) = 0 ,
(2, 1) —<2, 2><2, α > + 2α ( ζ ) , λ^/ζ>—2i<2,
(1,0) i<

We have fe, α> =  2/ <λ^ζ, Β), οτ (ζ, ά> = <ζ, ^^( ϋττλΒ)), whence in view of Lemma
3 we obtain a = ^~ ι( 2ίπλΒ) or  2ίπλΒ = fya. Since λ Φ 0, we may set α =  —2/π|λ|2σ,
where a € C", and then we obtain Β =  λ ^ α .

Moreover,

2<A(z), KUzy=2i(z, ζχλίίζ, 5> +  <ζ,  2><2, a > ,

or

, a}.

Replacing ζ by ^ ~ ζ in this identity, we obtain

(A(<U 1Z), 2> =  < 2/ λ< ^ 12, β>2, 2>.

Consequently A{%'xz) = 2ίλ{%~χζ, a) z, and finally Λ(ζ) =  2ίλ(ζ, a)z.
Thus

i<.z, a}z),

g3=2in\X\ 2w(z, ay.

The computation of Φ 4 is rather complicated; therefore we give it in detail. For this
we introduce the following notation. We will write (x +  l ) 7 —>•  7χ6 to signify that by se 
lecting from the expression (x +  I ) 7 the terms with a certain property we obtain 7x6. In
this case it is terms of degree 6; in our calculations it will be terms containing members of a
given e weight.

Fourth step: The term entering into Φ 4 not containing H4 is
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We display the terms of (7) of e weight 4 containing / / 4:

Re ig  + Re in \  λ | 2 w  > Re /  \  λ |» t/ / 4 (z, z) =  — π 1 λ I 2/ / 4 (z, z),

# *( / , 7)  * ^4 (/ i, 7i) =  Hx {λ%ζ, λ%ζ).
Now

Φ  R ( + 2(/ 3,  / x) + (/ „ /,» U< ljZ >

+  / / 4 (λ<ϊίζ, λ^2) — π Ι λ |2 Ht, (ζ, ζ),

f3=A(z)+wB{z), gt=\

where A(z) is a vector valued form of third order, B(z) is a linear operator, a G  C 1, and
and γ(ζ) are forms of second and fourth order respectively. Substituting and separating into
e components, we obtain

( 4.0) y(z)=0,
(3, 1)  < 2 , ζ>β(ζ)+ 2<Λ(ζ) ,
(2, 2) Re(—to)<z,

+  / / 4 (λ<2/ζ, λ^ ζ ) —π | λ 12/ / 4 (2, ζ) =  0,
(2,0)
(1.1) —
(0,0)

The (0, 0) equation gives Im a = π\λ\ 2<α, a). We set α =  π |λ|2(Γ +  Ha, a)), where r e R 1.
From (2, 0) we obtain B{z) =   4π |λ|2(ζ, a)2, in view of which (3, 1) takes the form

=  — 4π |λ |2 < ζ, ζ><ζ, α>2,

whence

<Λ ( ^  ' ζ ) , z> =  <—4λ<ζ,

From Lemma 3 we obtain

Λ (1i lz) =—4λ<ζ,

or

Λ( ζ ) = — 4λ<2, α>

LEMMA 4. From the identity (2, 2) it follows that

Hi (λ%ζ, λ%ζ) =  Λ \  λ Ι2 ΗΑ (ζ, ζ) .

P R O O F . By b) of Lemma \ ,H^{%z, Wz) e 'ili, and so

(/ / 4 {k%z, k%z) — n | λ |2 / / 4 (2, 2)) e=  31.

We observe further that the remaining terms of (2,2) are elements of the supspace JR. Separating
(2, 2) by 'DR components, we obtain the desired relation (see Lemma 1, a)).

Now from (2, 2) it follows that

ImCB(z), λ^ζ> = 3 ΐ |λ |*(<α> α><ζ. ζ> +  2<ζ, ώ><α, ζ » .
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Taking (1,1) into account, we obtain

<fl(z), KWz}=n\k\ z((r + Ka,  α»< ζ , z>+ 2i<z, α><α, ζ » ,

or

(B<U *z, ζ> =  <λ((Γ +  ι"<α, a » z +  2i<z, °Uay<Ua), ζ},

whence we find that

β ^  ' 2 = λ ( ( Γ +  ί<α, α » +2i{z,°Ua)<Ua),

or

Bz=X<U((r + i(a, α})ζ+2ί(ζ, α)α).

Thus

, α» ζ—

»α> 2—4<ζ, α> 2ΐο) .

We have obtained an interesting result.

LEMMA 5. If in (8) we sei λ' =  λ, π ' =  π, ^ = ^έ,α = a, and r =  /• , rten / or k =
1,2, 3, 4 we have

fk i — fk u Sk — Sk  (10)

P R O O F . The reader may check this directly by separating (8) into e components.

§2. The existence of forbidden dimensions for the stability group
For k > 4 the situation changes in the following sense.

LEMMA 6. Let k > 4. For fixed values of the parameters λ, ^ a, and r the equation
<i>fc =  0 admits uniquely defined / fc_ , and gk.

This lemma is a simple consequence of the work of Moser [3]. We present the proof
in the notation of that paper. We have

Φ Α = Ι (/ „_!, gk) + terms depending on / µ_4 and g»,

where µ < k. The equation Lh = F (mod SJ?) admits a unique solution h S DQ (see [3],
p. 234). But for k > 4

i
©0.

The lemma is proved.
Thus for k > 4 the equation ΦΛ =  0 allows no freedom for the introduction of new

parameters. However, in calculating fk_1 and gk we will not in general use all the informa 
tion contained in this equation. The aim of this section is to obtain further identities which
give the connection with the parameters previously introduced.
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In the case where the hypersurface Μ is spherical, i.e. coincides with the hyperquadric
S, these parameters are free, so we can hope to obtain such a relation only in the case where
Μ is nonspherical.

Now let Μ be nonspherical and let e be the index of the first nonvanishing component
in the e decomposition of N(z, z; u), i.e.

u =  ( z , z > +  ft(2,z; u ) +  . . . ( 11)

is the equation of M.
We note that e > 4, and e > 6 for η =  1.
We denote by Φ .̂ the kth e component of (9) with λ' =  λ, π ' =  π, ^ ' =  ^ί,α = α,

and r =  r, and by Dk we mean the sum of those terms entering into Φ which depend on
Η for some p.

LEMMA 7. For k =  1, 2, . . . , e — 1

/ * ! =  /* !> 8k —A' (12)

P R O O F . We proceed by induction on k. For k =  1, 2, 3, 4 the assertion is proved (see
Lemma 5). Suppose for a given p, 4 < ρ < e — 1, equation (12) holds for k =  1, . . . , ρ — 1.
This means, in view of (11), that Φ =  0 and Φ ,̂  =  0 will agree as equations for /  j and
g ; but by Lemma 6 this equation has only a single solution. Accordingly (12) is fulfilled
for k =  p . The lemma is proved. 

LEMMA 8. The following equations hold:

He (%%z, %%z; | λ | 2 u) = a \  λ I2 H, (z, z; u), (13)

fe l =  f$e l, ge =  gl (14)

P R O O F . We have

<De =  Re (igt +  2 </ ,_!, f{> +  2 < / e_2, / 2 ) +  . . . ) |p= < z 2> +  D.,

Φ ' =  Re (ig*. +  2 < / U, /x> +  2 < / U / , ) + . . .) U < z > z > .

We set ? =  /    f and J =  £   g*. Then from (12), (7), and (9) it follows that

Re(& +  2Cfe u mr»U <zz> +  De =  0.
We compute De:

Re ig  •  Re m | λ |2 a ; ^ n | λ |2 He (z, z; u),

He (f, / ; Re g)  + He (f, J; Re gt) =  ft (λ<ϊίζ, %Mi\  \  λ] 2 u) .

Thus

D e =  ft (λ«ϊίζ, KUz,  1 λ |2 u) — Λ | λ |2 ft (z, z; u)
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and consequently Dg £ ΪΪ (see Lemma 1 b)), i.e.

R e [ige + 2 < 7_ l t %%z)] ] u = < 2 z > = 0 (mod 31).

But from this it follows (see [3], p. 234) that fe_l = 0 and ge = 0; so De =  0. The lemma
is proved.

COROLLARY 1. If the form <z, z) is definite (i.e. all of its eigenvalues are of one sign),
then |λ| =  1.

P R O O F . We observe at once that π =  1. Further let the (m, Γ) δ component of the
polynomial He(z, z; u) vanish. Separating (13) into (m, / ) components, we obtain

hmt {%%z, ΪΜζ) (| λ |2 uf =  | λ |a hml (z, ~z) uk

or

where µ = λ1 m k\ l ' k. We remark that |µ| =  |λ|2 e.
Consider in C" the surface Κ defined by the equation <z, ζ) = σ, where

_ ( 1, if <z, z> is positive definite,
\—l, if (z, z> is negative definite.

Since the form (z, z) is definite, the surface Κ is compact. Let the maximum of the function
\hml(z, z)\  on this surface be attained at the point z 0 e K. We obtain

| µ|  = .

whence it follows that |λ| > 1.
In the same way, from the equation

ζ, ζ)

we obtain that |µ~ ' | < 1 and |λ| < 1. The corollary is proved.

LEMMA 9.

£>m =  rt | λ |a 2 Re (   2/  (ζ, α) Λ. +  (a +  i («, z » 5 ffe (a)

+  2/  (z, a> dfl. (z) +  i {z, a> (« +  i (z, z» A / / ,) (15)
du )

+  (//*+i (Wlz, mz\  | λ |» u) — η | λ |a # m (z, i; «)).

where 3//(v) « ί/ie va/«e o/  iAe //near /orm 97/  on the vector v.

PROOF . We have
R eig > ( a )  ^R et n ^ |2 t e>  > — π | λ |2 / / e + 1 (z, z; «),

(b)  * Re t (2tn | λ |2 (z, a> w) ~* — 2jt | λ |2 Re (t <z, a » He (z, z; u).
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We set

< ρ= λ  1 ^  7 ,  φ—|λ| *βτ,

  2η | λ |2 Re (i (ζ, α» · Η, (ζ, ζ; u),

(see (13)). Then, decomposing Ηβ(φ + Αφ, φ + Αφ; Re ψ +  Re Δψ) by increasing degrees
we see that the terms of weight e +  1 of the expression π\Κ\ 2Ηε(φ1 + φ2 +  . . . +  φχ +
φ2 + . . . , Re ψ2 +  Re ψ3

 +  •  · •  ) a r e

π 1 λ | a (dHe (Φι, Φι, Re ψ2) (φ,) +  dHe (φΧ) ^ , Re ψ2) (φ2)

Substituting the calculated values of φ 1 ; φ2,φ2, and i/ / 3, we obtain

Λ | λ|a(d# e(2, i; u) (wa + 2t (ζ, α)z) + dHe{z, z; u) (wa+ 2i(z, a)z)

+  2  He{z,~z\  u)2Rt(iw(z, a») I

=  η 1 λ |2 2 Re faff, (z, i; u) (ακι +  2t (ζ, α) z) +  i (z, a) tw  f  He (z, z; M)\
V " " / 0= <Z,Z>

^ i (/ . / ; Re g)  > ff,+ 1 (/ i, / i; Re &) =  ffm (λΐίζ, λ ^ ; Ι λ |2 u) .

Summing, we finally obtain (15).

COROLLARY 2. fe and ge+1 do not depend on r.

P R O O F . AS in the proof of Lemma 8, we obtain from (7), (9), (12), and (14)

R e( igM + 2(fe, λ%ζ))\^<22> + De+l =  0. (16)

But this allows us to define fe and ge+ x (see [3], p. 234). The corollary is proved.

LEMMA 10. If the hypersurface Μ is nonspherical, then the parameter r is uniquely
determined by λ, π, %, and a.

P R O O F . AS in the proof of Lemma 8, from (7), (9), (12), and (14) we obtain the
following relation in weight e +  2:

Re ( 6*. +  a<£«, λϋίβ>+2·<7.» / t»U<z.*> +  £ W=  o.
We compute the term De+0 containing the parameter r:

Reig  >RemlX|2ray2 vRetn|X|2 · r •  2i(u + i( z, z})He(z, z; u)
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#e(/ > 7; Reg) =  * Ι λ|2# fi(cp, φ;

  π Ι λ |a [dHt (z, ~z; u) (φ,) +  dH, (ζ, i; u) (φ3) +  ^H. (z, 1; u) (Re ψ j ]

r. * π | λ |»ReJ~2 (u + i (z, 2» 3He (z) +   £• #« (u2   (z, 2>2) 1

Consequently

De+i =  rn | λ |2 Re Γ— 2Heu + 2(u + i <z, 2 » <3#e (2)

Η He(z, z; u) («2 — (z, z) 2) I +  terms not containing r.
du j

But by the corollary to Lemma 9, and because/ 2 is independent of r, the product <fe, fz)
also is independent of r, and so

0 =  Re (ige+i + 2 ( / m , %%z)) |_ < M > +  rrt Ι λ I2 Re [   2H#  +  2 (« + 1 (z, z

+  "Γ" ^« (« — (2, z) ) +  terms not containing r.

Suppose for fixed λ, π, ^ , and a there are two values r, Φ r2 satisfying (17). We set
f=rr  r2 # 0 , / e + 1 = 7 e + i ( ' "i )  7 e + 1 ( / > 2 ) a n d ^ e + 2 =  ? e + 2 ( / · , )  ^ + 2 ( r 2 ) . Subtract 
ing (17) for r2 from (17) for rj, we obtain

=    m Ι λ |2 Re J   2/ / e« +  2 (a +  i <z, z» 5/ / , (2)  f ^ e (u2   (2, 2>2)1 . (18)

We observe furthermore that if hml is a polynomial of type (m, I), then

dhml(z)=mhml.

Therefore, in view of part c) of Lemma 1, the right hand side of (18) lies in sJi. We have

Re ( & + f +  2 </ e+ 1, λ ί ί ζ» \ v=^z> = 0 (mod 31),

whence fe+l = 0 and ge+2 = 0 (see [3], p. 234). Thus

Re (— 2Heti + 2(u + i (z, z)) dHe (z) +  £•  (ω2   {ζ, ζ)2)) =  0. (19)

Let He = uphp(z, !)+... + ho(z, I), where hp(z, ζ) Φ 0. Then the highest term of
(19) inu is

Re (— 2hp + 2dhp {z) + php) u
p + 1 =  0,

or

(p  2)hp + dhp (z) +  dhp (z) =  0.

But

0hp{z) +  dhp (z) =  (deg^) ( 2_ •  hp,
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and so

.fcp =  0. (20)

Since h G  9i, we have deg h ,z F ) > 4, and from (20) we obtain that h =  0, a contradiction.
This means /"j =  r 2 . The lemma is proved.

Let Gt be the stability group of the point ξ, i.e. G^ consists of the automorphisms of
the hypersurface Μ fixing ξ. If Μ is spherical, then G^ is isomorphic to the group of auto 
morphisms of the hyperquadric S and depends on (n +  I ) 2 +  1 real parameters. In general,
as will be shown in Theorem 3, for η =  1 the typical case is that where the dimension of
this group is zero. In connection with this the following theorem is of interest.

TH EOREM 1. Let Μ C C" + 1 be a nondegenerate real analytic hypersurface, and let
ξ €= Μ. Then the group G* cannot depend on (n + I ) 2 real parameters.

R E M AR K. In fact a stronger assertion will be proved. Namely, if Μ is nonspherical,
then the real dimension of Gt is less than (n + I ) 2 .

P R O O F . We reduce Μ to normal form in a neighborhood of | . If Μ is spherical, then
dim Gt =  (n +  I ) 2 +  1; if nonspherical, then from (13) and Lemma 10 it follows that
dim R Gt < (n + I ) 2 . The theorem is proved.

§3. Restrictions on the dimension in C2

This section is devoted to the proof of the following theorem.

TH EOREM 2. Let Μ be a nondegenerate real analytic hypersurface in C 2, and let
ξ ε Μ. If dim R G f > 1, then Μ is spherical, and consequently dim R G^ =  5.

For the sequel we need to develop some notions concerning CR  functions on the
hyperquadric S.

We set X =  3( )(z) +  z"<z, z>9/ 9«, and correspondingly X = d( )(z)   /<z, z>9/9w. The
properties of the operators X and X which we need are stated in the following lemma.

LEMMA 11. a) If φ is a CR function on S, then Χφ — Χφ = 0.
b) / /  ψ is a homogeneous polynomial in ζ of degree ρ whose coefficients are CR func 

tions on S, then Χφ = p\p and X\p = ρψ •
In particular, a linear form is left invariant.

P R O O F . Part a) follows from the definition of a CR  function. We get part b) by
direct computation. We calculate [X, X]:

ΧΧφ =  (d ( ) (i)   i (z, z>  £ ) (dq> (2) +  i <z, z) q>«)

=  ddy (z, z) +  t (z, z) <pu +  i (z, z) dq>u (z) — i (z, z> dcpu (z) +  (z, z>2 qw,

ΧΧφ =  (d ( ) (z) + i (z, z>  £• ] (Ap (i)   i (z, z) epu)

=  35φ (ζ, z) — t (ζ, ζ)φ« — i (ζ, ζ) dyu(ζ) +  i(ζ, ζ>5φΗ(ζ) +  (ζ,  ζ ) 2
φ < ω .
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Thus

Θ= [Χ, Xj= XX XX =  2i(2, 2) — .
du

We compute [Χ,  Θ] :

Χθφ =  fd ( ) (2) — i (2, 2>  £ ) 2t (2, 2> φ«

=  2t(2, 2 ) φ ο +  2ί(2, 2)5φ«(2) +  2 <2,

ΘΧφ =  2ί (ζ,ζ) ϊ  (δφ (ζ) — i {ζ,  2> <pu) =  2ϊ (ζ,  2>  f  5φ (ζ) +  2 (2, 2>2 φ««.
ou ou

Therefore

[Χ, θ ] =  Χθ — ΘΧ =  2t (2, 2> — =  θ .
5Η

Conjugating this equation, we obtain [Χ, Θ] =  Θ. We set φ =  </, Cz>, where /  is a vector 
valued C7? function on S  (i.e. an « tuple of CR functions on S), and C is a linear operator on
C". Letting \p = φ + φ, we have

LEMMA 12. Ifr = (X  2)(X   \ \X   1), then τ(ψ) =  0.

PROOF . We have

Χφ =  X(CZ,  / > =  (XC2, / ) +  (Cz, Xf),

but since XCz = Cz and Xf = 0, it follows that Χφ =  <Cz, /> =  ψ, i.e. (Z   1)φ =  0.
Analogously, (Z   1)φ = 0. Then we have (X   1)φ = (X   1)φ; but, since [X   1, X   1]
=  θ ,

( X— 1)(X — 1) ψ =  ( X— 1) ( X— 1)φ =  [ ( X— 1) ( X— 1) +  θ] φ =  θφ .

Also

Subtracting, we obtain

or, finally,

The lemma is proved.

LEMMA 13. Ifge+l satisfies (16), then

=  (ο>  if

(«j (Z) («

where αχ (ζ) w a / /«ear form.

ge+ i
if e =
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We give the proof for the case e =  2k. We set

Je =  Ao (U +  i (2, Z)f + 4 (Z) (U +  i <Z, Ζ»*"1 +  . . . +  A* (z),

gm =  «χ (2) (« +  t (2, 2»* +  a 3 (z) (u + i <Z, Z»*"1 +  . . . +  aik+1 (z),

where a (z) is a form of degree p, and Λρ(ζ) is a vector valued form of degree p. From (15)
it is clear that De+ χ does not contain terms of type (p; 0), so the terms of this type must
be equal in the expression

We obtain
(2k + 1,0) >α2Α+ 1(ζ) =  ϋ,
(2fe l,0) » a2ft_1(z) =  0)

(1 1 0) _•  ax (z) — (λ1ίζ, Λ> = 0.

The lemma is proved.
We compute τ(φ), where φ = (fi(z)wk + j3(z)wfc)|u= < z z ) and β(ζ) is a linear form. We

have

X<p =  $w
k +  2ί/ ί (ζ,

(X — 1) φ =  2ik (ζ, ζ) β^ "

X (X — 1) φ =  2ik (ζ, ζ) Vw" 1 — $wk + 2pk (z, z)

(X — 2) (X — 1) φ =  — 2i^ (ζ, ζ> βα ^ 1 +  βα>* — β · 2ik (ζ, ζ> α)*"1

2ί^ (ζ, ζ}™"'1 + β · 2ik (ζ, ζ)ω*~ ι  1  β •  2ik(_z, ζ) · 2i(k — 1)(ζ, ζ) Β»*"1.

We note that τ(ιρ) is a quadratic form in ζ whose coefficients are CR functions on S. There 
fore (see Lemma 11 b))

(Χ 2 ) τ (φ ) = 0 . (21)

Suppose there exist two distinct vectors αλ Φ α2 satisfying (16). Introducing the
notation a = αλ  a2,fe =Je{al) }e(a2) a n d £ e + 1 =ge+1(al) ~ge+1(a2), and subtract 
ing (16) for a2 from (16) for αχ, we obtain

Re dh+i + 2 CfMz)) U < I > f > +  De+1 =  0,
where

D e+ i =  2rt 1 λ |2R e (— 2i (z, a) He + (u + i <z, z» dHe (a)

+  2/  (ζ, α) a «. (z) +  i (ζ, α) (u  f t <fz, z» ^ e) .
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Letting T = (Χ — 2)τ, we deduce from Lemma 13 and (21) that

TDm =  0. (22)

If we view this as an equation for the vector a, then it represents a system of linear equations
for the unknowns

R ea\  I m a \  . . . , Re a", Ima".

Therefore the set of solutions is a linear subspace of R 2" =  C". Let this subspace consist of
the complex lines {a =  taQ,  where i E C 1 and a0 Φ 0}. Then, introducing the variable t
into (22) and separating the terms of degree (0, 1) in t, we obtain

2i(z, a 0) H. + (u  i(2, 2» dH. (a0)

+ 2i (2, ao> dHe (2) +  i (2, «„) (U + 1(2, 2» ̂  ) = 0.
ou I

Let χ =  3( )(z), d =  <z, z>9/9«, and xft =  Λ; — fc£\  where Ε is the identity operator. Then

Τ =  (*2 +  irf) (Ĵ s — td) (^i — id) fa + id).

LEMMA 14. If a(z) is a linear form, then

χκ(α(ζ)φ)=α(ζ)χκ ιφ.

PROOF.

xk(a(z)<p) =x(a(z)(p)—ka(z)(p
=  α (ζ) φ +  α(2)x<p—ka(z)<p—a(z) (x— (k—l))φ

= a(z)xh l<p.

R EM AR K. We have correspondingly

We expand Τ in powers of the operator d:

Γ =  (x, +  id) {x2 — id) (x,   id) {xt + id)

=  (*2*i •  +  id Xt ~ ix2d + d2) (x1x1 — idx1 + id x1 + cP)

=  (x%x\  + i (x3 — x2) d 4  d2) (xjcj, + i {xx — xz)d + d2)

=  x ^ x ^ +  i (x2x3 (x± — x2)  f  x2x^ (x3 — x2)) d

+ (x^ + x3x3 — (xs — x2) (x\  — x3)) d
2 + i ((*,   x2) +  (̂ 3 — xt)

i.e.T=lo+ ^d + l2d
2 + l3d

3 + d4, where

/ , =  ((x—2) (*—2) +  (*—3) (x 3) — (x x)2

U=2i(x~x).
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In the sequel we assume that η =  1. Let

P = u ^, Q = iz(2x — χ +  κ — 2), R = —zd,
dz

where κ =  ud/ du. Then (22) may be written as

T(P + Q+R)(He)=0.

T(P +  Q + R) may be represented in the form

Τ (Ρ +  Q +  R)   ul0 / 4Λ +  ζ (Αο +  V +  4<22 +  3̂d
3 +  44d*   d5).

where the operators X(. transform monomials czmzpuk into monomials of the same type, i.e.
each monomial is an eigenvector. Setting

we have

We compute A_v Ao, and Αχ:

dz

IAQ) =  (x 2)&  2)(x   \ )(x  1) [iz(2x x +  κ  2) ]
=  ί"2(Λ:— 1)χ(χ — 2)(x   1)(2JC — χ +  κ — 2),

=  2i A /„  A\  =  Z2 A (1 +  κ ) =  2χ(κ +  1),
to \  dz I dz

= ζ •  2i(x~ l)(x — 2)(x — x— l)x(x+ 1).

As a result we obtain

Ao = i{x— l)(x — 2)[x(x ~ l)(2x — x + x — 2) + 2(x — χ— 1)χ(τι + 1)],

Ad =  ( γ

l0 (R) = (χ   2) (x   2)_{x   1) (x — 1) (   zd)
= —z(x — l)x(x~2)(x  \ )d,

d{Q) = iz(2x — x + x — 2)d,

l1d(Q) = ~2z(x—l)(x  2)(x — x l){2x — x + x — 2)d,

d2(P) =  z2 · z2 — (u —\  =  z2 •  52 · —( κ +  2) —

j  = ζ(χ— 1)(κ +  2)d,



240 V. Κ. BELOSAPKA

z[(x— 1)(χ — 2) + (χ  2) + (x 2)(x 3)

so that

A =  (((x— 1 )( ί —2 ) +  (x — 2)(x — 3)~(x — x — If +  Ι) (χ — 1)(κ +  2)

We have G (/ / e) =  0.
Let

He =  us (/ ι*

We will calculate the coefficients of G(He). We denote by A({m, p) the factor which
appears in front of the monomial zmz~p after application of the operator At, and by G(m, p)
the coefficient of zmzp in G{He).

Each coefficient of G(He) is a linear combination of the h , so by setting these coef 
ficients equal to zero we obtain linear equations connecting the hm . Our immediate goal is
to prove that Λ42 =  0. This can be done using the fact that the operator G acts on the
symmetric monomial He in an asymmetric manner. This enables us to obtain additional
equations without introducing new unknowns.

We have

G (2, 4) =  h3hA_x (3, 5) +  / ί ,Λ (2, 4),
A_j. (3, 5) =  1 · 2 · 3 · 2 •  5 =  60,

Λβ(2,4):=Μ·2·[ 2·3(4—4 + s—2)+2(4—2—
= 2t[ 6(s—2)+8(s+l)] =4i(7s—2).

Cancelling a factor of 4, we obtain

I5h35 + i(7s—2)hu=0. (23)

Furthermore,

G (5, 3) =  h^A^  (6, 4) +  AeA (5, 3) +  A4A (5, 3),
Λ_ ι(6, 4) =  4 · 5 · 2 •  1 · 4 =  160,

A0(5, 3) =  t  4 •  1 •  [5 •  2(10 — 3 +  s — 1—2) + 2 ( 3 — 5 — 1)3s]

=  4i [ 10 (s + 4 — 18s)] =  — 32t (s — 5),

i4j(5, 3) =  {[4 · 1 +  3  0  9 +  1]  2 ( s +  1) — 4  5   1  2

+  2 4 1 3(10 — 3 +  s— 1  2 ) } =  — 8 ( s +  1) — 40 +  24( s+ 4) =  16 ( s +  3).

Cancelling a factor of 16, we obtain

l0hei—2i{s—5)/ i53+  (s +  3) fc 4 S = 0 . (24)
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Moreover,

G(3, 5)= / ι46/ 1 1(4, 6)+Α,Α(3, 5)+ A,A(3, 5),

Aj( 4 , 6) =  2 •  3  4 · 3  6 =  27 · 16,

Ao (3, 5) =  ί · 2 · 3 [3 •  4 (6 — 5 +  s — 1 — 2) +  2 (5 — 3 — 1) 5s]

=  6t [12(s — 2 ) +  10s] =  12 i ( l l s—12) ,

^ ( 3 , 5) =  {[2  3 +  1 · 2 —1 +  l ] 4 ( s +  1) —2 · 3 · 3 · 4

— 2  2 · 3 · 1(6 — 5 +  s — 1 — 2)} =  3 2 ( s + 2 )  7 2 —12( s — 2) = 4 ( 5 s —4 ) .

Cancelling a factor of 4, we obtain

27 4/ i46 +  3 i ( l l s—1 2 ) / i 3 5 + ( 5 s—4 ) / t 2 4 = 0 .

(23), (25), and the equation obtained by conjugating (24) form a system of three linear
equations for the unknowns Λ46, h35, and &24. We express it as a matrix

0 15 i(7s—2)N
10 2i(s —5 ) (s +  3)

4 3 / ( 11s  12) ( 5s—4)

Dividing the first column by 2 and taking the determinant, we obtain

A(s)= = 3(—19 7 s2—657 S + 2 575).

We note that Δ(0) Φ 0 and Δ(1) φ 0, but for s > 2 we have 657 s > 2 •  575, so
A(s) < 0 for s > 2. Thus we have shown that A(s) Φ 0 for χ =  0, 1, 2, . . . , and so Λ42 =  0.

By comparing the components of (16) of type (1, 0), (2, 1), and (3, 2) for η = 1 and
e =  Ik, we obtain in the notation of Lemma 13

Hence in view of the condition fc42 =  0 it follows that α =  0. Thus ge+ j =  0, since it is
independent of the parity of e. Now from Lemma 12 we obtain

x(P + Q+R)(H.)=0.
We expand the operator τ in powers of d:

τ =  ( ^ — id) ( £ — id) (xt +  id) =  (7g — id) [ 7lx1 + i ( £ — *, ) d +  d2]

=  *2*i*i +  i[x  x — (x~2)(* — 2) +  l]d +  (2x — χ— 1) ίΡ — id3.

We introduce the following operator:
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like G, it may be written in the form

ρ __ — £_! +  B0 +  B,d +  Bzd* +  B3d
3 +  id*,

where

5 j =  ζ (x — 2) (x— 1)(ΛΓ— 1) (—\  = (x — 3) (χ — 2) χ (χ — 1).
\dz)

Computing the coefficients of zlm~l in Γ(Η£), we obtain

Γ(1, m— l)= / i2mB_ 1(2> m)=htm(m—3) (m—2)m.

If m > 4, it follows from the identity T(He) = 0 that &m 2 =  0. We now prove by induction

=  0 for q < p. Then

, m+p— 1)ι= θ_,(2+ ρ,
= (m+p—3) (m+p—2) (m+p) (p+ 1)Λ?+,,  m + p .

From r(7/ e) =  0 we obtain that h2 + p m +  p =  0. This also shows that He =  0. This is a
contradiction; that is, the space of solutions of (22) for a is at most one dimensional.

We summarize. If the hypersurface Μ is nonspherical, then the number of degrees of
freedom of the parameter λ does not exceed unity (see Corollary 1), the parameter a, as
shown in this section, also has at most one degree of freedom, and the parameter r has no
freedom (see Lemma 10). Consequently, the dimension of £7̂  in this case does not exceed
two.

Let dim R Gg =  2. This means that (13) really has one degree of freedom in λ. This
can be so only if

where L Φ 0. But in this case the right hand side of (16) lies in 91, so Je = ge+l = 0.
We obtain

2Re {a [P+Q + R] (He)} =  0.

Selecting from this equation the leading component in u, we find that

M S + 1 · Lpp •  P2 Re {α [τΓτΓ1 + ζ""1?] } =  0.

whence it follows that a = 0, and there remains all told one degree of freedom in the whole
group Gt  Theorem 2 is proved.

§4. The stability group of a nonumbilical point
The point ξ £  Μ is called umbilical if the contact of a spherical surface at this point

is of higher order than what the normal form guarantees.
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Let η =  1, and let

0 =  I * I2 +  % («) * ? +  C24 («) Z ? +
min(m,/ )>2

be the equation of Μ in normal form. Then the point 0 is umbilical for this surface if
c 4 2( 0) =  0.

We denote c 4 2( 0) by h, c S 2( 0) by p,  and c 4 3( 0) by q.

TH EOREM 3. Let Μ be a nondegenerate real analytic hypersurface in C 2, and let
ξ G  Μ be a nonumbilical point, i.e. h Φ 0. Then the group G^ consists of not more than two
mappings.

Moreover, if in addition hp + 3hq φ 0,  then G^ =  {E}, i.e. there is no automorphism
of the hypersurface leaving ξ fixed and different from the identity.

P R O O F . Since ξ is not umbilical, we have e =  6 and

Ht =  hz*? + hz2?. (26)

As a consequence of (13) we obtain λ3 · λ =  1. This equation has the two solutions 1 and
 1 . We will show that to each of these two values of λ corresponds at most one value of a.

Rewriting (16), we obtain

R e ( i g 7 +  2 λ J e z w ^ ^ ^ ^

+ (ΗΑλζ,λζ) Η7(ζ,ζ)). (27)

Suppose there exist two values of a, say a1 and a2, satisfying (27). Set

a =  Q l — a2, ?β= / β (αι ) — fe(a2), g7 =  £ 7(θι ) — BA<h)·

Subtracting (27) for a2 from (27) for αγ, we obtain

Re(/ £7 +  2λ];ζ) !_ „ , . =  2 Re a \   2izHe   iz"z ̂  +  2iz* ̂   +  u ^

Substituting (26) here, we find that

) | 0 = | l |

=  2 Re α [4t/ i25? — 2ihz* •  z4 +  2uhz*z + 4uhz2 •  ? ] .

We set

λ/ βζ =  Az«z + Bz*zw + Cz2zw* +  Dzw3,

— g7 = azw3 + β · zW +  yz5w + δζ\

The right hand side of (28) does not contain terms of type (7, 0), (5, 0), or (3, 0); so,
setting the corresponding components of the left hand side equal to zero, we obtain
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β — γ =  δ = 0 . Now computing the coefficients of the components of the left hand side of
types (5, 2) and (4, 1), we find that ( 5 , 2) —* iB and (4, 1) —> B. Equating them to the
corresponding components of the right hand side, we obtain

4ί7ια =  iB, 2ha =  B. (29)

But h Φ 0, so (29) means that a =  0.
To complete the proof of the first part of the theorem it remains to apply Lemmas 8

and 10.
Now taking into account that

+ qz9z*

we write (27) for λ =   1 . We obtain

Re (&
=  2 Re \a (Aitof* — 2i7tzV +  2uhz*z

We set

=  Az*z  f Bz*zw +  Cz2zw2 +DZW 3,

— g7 — azu?  \   βζ'ίϋ2  f  yz*w +  δζ' .
2

As before, from the comparison of the components of type (7, 0), (5, 0), and (3, 0) we have
β = y = δ = 0. The remaining components give the equations

(6,
(5,
(4,
(4,
(3,
(2,
(1,

1)
2)
3)
1)
2)
1)
0)

A = 0,
iB = 4iha—2p,
—C+iD—ia=2iha—2q,
B=2ha,
2iC—3D—3a=4ha,
C—3iD + 3ia=0,
D+a=0.

From (5, 2) and (4, 1) we obtain

p=iha. (30)

Equations (4, 3), (3, 2), (2, 1), and (1, 0) form a system of four linear equations for the
three unknowns C, D, and a. Eliminating unknowns, we obtain on the right hand side the
relation ha + 3iq =  0, which together with (30) gives finally ph + 3qh =  0. The theorem is
proved.
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