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Abstract The model 4-dimensional CR-cubic in C
3 has the following “model” prop-

erty: it is (essentially) the unique locally homogeneous 4-dimensional CR-manifold
in C

3 with finite-dimensional infinitesimal automorphism algebra g and non-trivial
isotropy subalgebra. We study and classify, up to local biholomorphic equivalence,
all g-homogeneous hypersurfaces in C

3 and also classify the corresponding local
transitive actions of the model algebra g on hypersurfaces in C

3.

Keywords CR-geometry · Homogeneous · CR-manifolds
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1 Introduction

The most interesting objects in CR-geometry are CR-manifolds with symmetries,
i.e., CR-manifolds admitting (local) actions of Lie groups by holomorphic trans-
formations. If such an action is (locally) transitive, then the manifold is called (lo-
cally) holomorphically homogeneous (or just homogeneous). Locally homogeneous
manifolds are “the same in all points”, i.e., the germs of a locally homogeneous
manifold at any two points are biholomorphically equivalent. Among all homo-
geneous CR-manifolds one can single out so-called model manifolds—algebraic
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CR-submanifolds in C
N with maximal-dimensional automorphism groups. As it was

demonstrated in [5, 9, 17], the properties of model manifolds determine in many as-
pects the properties of general CR-manifolds. In this paper some interplay between a
model 4-manifold in C

3 and homogeneous hypersurfaces in C
3 is studied.

To work with homogeneous CR-manifolds and their symmetry groups and alge-
bras we give a few definitions.

Consider in the complex space CN a germ Mp of a generic real-analytic
CR-submanifold M at a point p ∈ M (we suppose that all CR-submanifolds are
real-analytic and generic if not otherwise mentioned). We consider the following
objects:

(1) autMp—the Lie algebra of germs at the point p of vector fields of the form

2 Re

(
f1(z)

∂

∂z1
+ · · · + fN(z)

∂

∂zN

)
,

which are tangent to M at each point, and the functions fj (z) are holomorphic in a
neighborhood of p. We call such vector fields holomorphic vector fields on M in a
neighborhood of p. Clearly these vector fields are exactly the ones which generate
local actions of Lie groups on M by transformations, holomorphic in a neighborhood
of p in C

N . The Lie algebra autMp is called the infinitesimal automorphism algebra
of M at p. If autMp is finite-dimensional, then all vector fields from this algebra can
be defined in the same neighborhood and there exists a connected simply-connected
Lie group, acting on M locally by holomorphic transformations in a neighborhood of
the point p, such that its tangent algebra is isomorphic to autMp and the vector fields
from autMp are the infinitesimal generators of the action. We denote this local group
by AutMp and call it the local holomorphic automorphism group of M at p.

(2) autpMp—the Lie subalgebra in autMp , which consists of germs of vector
fields from autMp , vanishing at p. This algebra is called the stability subalgebra
of M at the point p or the isotropy subalgebra. If autMp is finite-dimensional, then
autpMp is naturally identified with the tangent algebra of the stability group AutpMp ,
which consists of holomorphic automorphisms of the germ, fixing the point p.

A local action of a finite-dimensional real Lie algebra h on the germ C
N
p of the

complex space C
N at a point p is a homomorphism ϕ : h −→ autCN

p . If M is a
CR-submanifold in C

N , passing through p, we say that h acts transitively on Mp (or
that h acts locally transitively on M at the point p), if the linear space, spanned by the
values at the point p of the vector fields from ϕ(h), which are tangent to M , coincides
with TpM . The germ Mp is called homogeneous in this case, and the manifold M is
called locally homogeneous at p. If M is locally homogeneous at all points, then
we call it just locally homogeneous. For more information about possible equivalent
definitions of homogeneous CR-manifolds we refer to [18].

With any local action of a Lie algebra h we can associate a local action of a local
Lie group H with tangent algebra h and consider the orbits of this action. These orbits
are locally homogeneous CR-manifolds and their local homogeneity is provided by
the Lie algebra h. We call this collection of orbits locally homogeneous manifolds,
associated with the Lie algebra h.

Coming back to homogeneous CR-manifolds in C
3, we first mention E. Cartan’s

classification theorem for homogeneous hypersurfaces in C
2 (see [8]). Due to this
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theorem, the following trichotomy holds for a locally homogeneous hypersurface in
C

2
z,w:

(1) dimautMp = ∞, which occurs if and only if M is locally biholomorphically
equivalent to the hyperplane Imw = 0 (the Levi-flat case).

(2) dimautMp = 8, which occurs if and only if M is locally biholomorphically
equivalent to the unit sphere |z|2 + |w|2 = 1.

(3) dimautMp = 3, which occurs if and only if M is locally biholomorphically
equivalent to one of Cartan’s homogeneous surfaces (see [8] for details).

Note that due to a classical result of H. Poincaré [16], all other hypersurfaces in
C2 have infinitesimal automorphism algebras of dimensions ≤ 2.

Hence we have the following rigidity phenomenon for germs of Levi non-
degenerate homogeneous hypersurfaces in C2: any such germ is either a germ of the
model surface (i.e., the sphere in our case) and has maximal-dimensional infinitesi-
mal automorphism algebra, or it is holomorphically rigid, i.e., its stability subalgebra
is trivial.

The classification of homogeneous hypersurfaces in C
3 is not complete yet. In the

case of Levi non-degenerate hypersurfaces with high-dimensional isotropy subalge-
bras the classification was obtained by A. Loboda (see [14, 15]). In the Levi degen-
erate case the full classification was obtained by G. Fels and W. Kaup. To describe
their results we give the following definition: a CR-submanifold M in C

N is called
holomorphically degenerate, if in a neighborhood of any point p ∈ M there exists
a non-zero holomorphic vector field on M , which belongs to the complex tangent
space of M at each point. In this case it is not difficult to see that dimautMp = ∞.

Otherwise M is called holomorphically non-degenerate. In particular, all Levi non-
degenerate hypersurfaces are holomorphically non-degenerate. In the case of a Levi
degenerate hypersurface in C

3 this non-degeneracy condition is equivalent to the 2-
nondegeneracy, in a general point, which is some condition on the defining function
of the hypersurface (see [2] for details). For a 2-nondegenerate hypersurface the Levi
form has rank 1 at each point and dimautMp < ∞.

Now we can formulate the classification theorem of G. Fels and W. Kaup. Due to
this theorem, the following trichotomy holds for a locally homogeneous Levi degen-
erate hypersurface in C

3:

(1) dimautMp = ∞, which occurs if and only if M is locally biholomorphically
equivalent to a direct product M3 × C, where M3 ⊂ C

2 is one of the homoge-
neous hypersurfaces in C

2 from E. Cartan’s list specified above (holomorphically
degenerate case).

(2) dimautMp = 10, which occurs if and only if M is locally biholomorphically
equivalent to the tube over the future light cone: y2

3 = y2
1 + y2

2 , y3 > 0, yj =
Im zj , (z1, z2, z3) ∈ C

3.
(3) dimautMp = 5, which occurs if and only if M is locally biholomorphically

equivalent to the tube over an affinely homogeneous hypersurface in R
3 from

some list, specified in [13].

Hence, in the same way as in E. Cartan’s case, we have the rigidity phenomenon
for germs of holomorphically non-degenerate locally homogeneous hypersurfaces in
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C
3: any such germ is either a germ of the model surface (i.e., the tube over the future

light cone in that case) and has maximal-dimensional infinitesimal automorphism
algebra, or it is holomorphically rigid, i.e., its stability subalgebra is trivial.

We study the class of locally homogeneous hypersurfaces in C
3 with the fol-

lowing property: the local homogeneity of these surfaces is provided by one of
the model algebras in C

3—the unique 5-dimensional model algebra for the class
of 4-dimensional holomorphically non-degenerate (or, equivalently, totally non-
degenerate [7]) CR-manifolds in C

3. This algebra is the infinitesimal automorphism
algebra g of the model 4-dimensional CR-cubic C, given by the following equations:

Imw2 = |z|2, Imw3 = 2 Re(z2z̄), (z,w2,w3) ∈ C
3

(this notation is related to a natural gradation of the coordinates in C
3; see Sect. 2).

Due to V. K. Beloshapka, V. V. Ezhov and G. Schmalz (see [7]), the model proper-
ties of the cubic C are given by the following trichotomy for a 4-dimensional locally
homogeneous CR-manifold M in C

3:

(1) dimautMp = ∞, which occurs if and only if M is locally biholomorphically
equivalent to a direct product M3 × R

1,M3 ⊂ C
2
z1,z2

,R
1 ⊂ C

1
z3

(the holomor-
phically degenerate case).

(2) dimautMp = 5, which occurs if and only if M is locally biholomorphically
equivalent to the cubic C.

(3) dimautMp = 4,dimautpMp = 0 for all other manifolds (the rigidity phenom-
enon).

It is proved also in [7] that the cubic C is the most symmetric holomorphically non-
degenerate 4-manifold in C

3: dimautM0 ≤ dimautC0, and the equality holds only
for manifolds, locally biholomorphically equivalent to the cubic. The automorphism
group G and the infinitesimal automorphism algebra g of the cubic are described in
the next section.

We associate with the cubic C some (locally) homogeneous hypersurfaces in C
3

in two different ways.
The first one is to consider the natural action of the 5-dimensional polynomial

transformation group G (or, equivalently, of the model algebra g) in the ambient
space C3. Since the group is of dimension 5, we conclude that the cubic is a sin-
gular 4-dimensional orbit of this action, but general orbits are of dimension 5. This
approach was realized in [6]. Note that according to the above trichotomy for a ho-
mogeneous 4-manifold in C3 this machinery for the construction of homogeneous hy-
persurfaces in C

3, associated with a homogeneous 4-manifold, is the only possible,
i.e., the class of hypersurfaces obtained in [6] is (essentially) the class of all locally
homogeneous hypersurfaces, associated in the natural sense with locally homoge-
neous 4-manifolds in C

3 (in the category of non-degenerate manifolds). In Sect. 2
we give a review of the results of [6] and also give another (tube) realization to the
foliation to orbits obtained in [6] (case A in the theorem below). It helps us to recog-
nize one special orbit as one of the hypersurfaces from [13] and also helps us to find
an interesting realization of the cubic C as the tube over the twisted cubic in R

3. In
Sect. 3 we classify the obtained homogeneous hypersurfaces and compute their au-
tomorphism groups. In particular, we prove an analogue of the Poincaré-Alexander
theorem (see [1, 16]) for the orbits under consideration.
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The second one is to consider all homogeneous hypersurfaces in C
3, associated

with the abstract model Lie algebra g. The approach in this case is analogous to
E. Cartan’s approach in the classification problem for hypersurfaces in C

2. We find
all possible realizations of the abstract Lie algebra g as an algebra of holomorphic
vector fields in C

3, acting transitively on hypersurfaces, and thus find all possible
orbits of the corresponding actions—they form the desired class of homogeneous
hypersurfaces in C3 (we call these hypersurfaces g-homogeneous). This approach is
realized in Sect. 4. In Sect. 5 we classify the obtained homogeneous hypersurfaces
up to local biholomorphic equivalence and compute their infinitesimal automorphism
algebras (and hence the corresponding local automorphism groups). As a result we
prove the following classification theorem for g-homogeneous hypersurfaces in C

3:

Main theorem (1) The model algebra g has 4 types of local transitive actions on
hypersurfaces in C

3—actions of type A,A1,A0 and B , described in Sect. 5. Any two
actions of different types are inequivalent. The corresponding orbits look as follows.

TYPE A: N±
ν =

{
(y3 − 3y1y2 + 2y3

1)2 = ±ν(y2 − y2
1)3,±(y2 − y2

1) > 0
}

,

ν ≥ 0,

N0 =
{
y2 = y2

1 , y3 �= y3
1

}
.

TYPE A1: Sγ =
{

y3 = γy3
1 + y2

2

y1
, y1 �= 0

}
, γ ∈ R.

TYPE A0: Qβ = {y3 = βy3
1 + 2y2x1, y1 �= 0}, β ∈ R.

TYPE B: �δ = {y2 = δy1, y1y2 �= 0}, δ ∈ R
∗.

Here zk = xk + iyk .
(2) Any g-homogeneous hypersurface in C

3 is locally biholomorphically equiv-
alent to one of the following pairwise non-equivalent homogeneous hypersurfaces
in C

3:

(a) Tube manifolds N±
ν for ν > 0.

(b) Tube manifolds S±1 (the case of Sγ , γ ∈ R
∗).

(c) The tube over the future light cone y2
3 = y2

1 + y2
2 , y3 > 0 (the case of S0).

(d) The indefinite quadric y3 = |z1|2 − |z2|2 (the case of N±
0 and Qβ,β ∈ R).

(e) The cylinder over the unit sphere in C
2: |z1|2 + |z2|2 = 1 (the case of M0).

(f) The real hyperplane y3 = 0 (the case of �δ, δ ∈ R
∗).

In cases (e) and (f) the infinitesimal automorphism algebras of the surfaces are
infinite-dimensional; in cases (c) and (d) these algebras are well-known simple Lie
algebras (see [5, 9, 12] for the description of the algebras and the corresponding
local automorphism groups); in case (a) the infinitesimal automorphism algebras co-
incide with the model algebra g, and all local automorphisms of the surfaces are
global and belong to the group G; in case (b) the infinitesimal automorphism alge-
bras are isomorphic to the model algebra g (more precisely, they coincide with the
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algebra A1), the corresponding local automorphism group is described in Sect. 5,
hence in cases (a) and (b) the hypersurfaces are holomorphically rigid.

Remark 1.1 We note some interesting facts, which follow from the above classifica-
tion theorem.

(1) All g-homogeneous hypersurfaces are locally biholomorphically equivalent to
globally homogeneous hypersurfaces.

(2) All g-homogeneous hypersurfaces turn out to be tube manifolds over affinely
homogeneous hypersurfaces in R

3 in an appropriate local coordinate system (for the
indefinite quadric we get the tube realization by means of a quadratic variable change,
as well as for the unit sphere in the Poincaré realization). Affinely homogeneous
hypersurfaces in R

3 were classified in [10, 11], but the corresponding tube manifolds
in C

3 were not studied from the point of view of holomorphic classification and
automorphism groups. Hence the present work can be considered as a step in this
direction.

(3) The hypersurfaces N+
μ for μ > 0, N−

ν for ν > 0, ν �= 4 and S±1 are Levi
non-degenerate and holomorphically rigid. Hence they give examples of pairwise
non-equivalent locally homogeneous hypersurfaces in C

3, which are not covered
by the classification theorems obtained in [13–15] (the exceptional orbit N−

4 is
2-nondegenerate and hence occurs in [13]).

(4) In the same way as it results in the classification theorem of E. Cartan and that
of G. Fels and W. Kaup, the following rigidity phenomenon holds: each holomor-
phically non-degenerate homogeneous hypersurface, generated in the specified sense
by the model algebra g, is either extremely-symmetric (a quadric—the most sym-
metric Levi non-degenerate hypersurface, or the tube over the future light cone—the
most symmetric 2-nondegenerate hypersurface), or it is holomorphically rigid, i.e.,
its isotropy subalgebra is trivial. Each of the obtained infinitesimal automorphism
algebras turns out to be isomorphic to one of the model algebras in C

3 (i.e., to the
infinitesimal automorphism algebra of a quadric, of the cubic or of the tube over the
future light cone). Thus the construction of homogeneous hypersurfaces, used in [6]
and in the present paper, gives an interesting connection among model algebras in C

3.
It is also amazing that the obtained holomorphically degenerate hypersurfaces are in a
certain sense also extremely-symmetric: the first one (the hyperplane) is the cylinder
over the most symmetric hypersurface in C

2—the hyperplane Imw = 0, and the sec-
ond one is the cylinder over the most symmetric Levi non-degenerate hypersurface in
C

2—the unit sphere |z1|2 + |z2|2 = 1.

Remark 1.2 Note that the above classification theorem gives a description of all pos-
sible hypersurface-type left-invariant CR-structures on the group G = Aut(C) (see
Sect. 2).

The authors would like to thank W. Kaup for useful remarks, which helped to
improve the text of this paper.

2 Action of the Automorphism Group of the Cubic in the Ambient Space

In this section we describe the automorphism group G and the infinitesimal automor-
phism algebra g of the cubic C, and then give a review of the paper [6], where the
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action of the group G in the ambient space C
3 was studied and the corresponding

orbits were presented explicitly. Also we present another (tube) realization of the ob-
tained foliation of C

3, given by the group G, which helps us to recognize one special
orbit as a well-known hypersurface in C

3 and find a tube realization for the model
cubic C.

As it was mentioned in the introduction, the cubic C is a homogeneous 4-
dimensional CR-manifold in C

3, given by the following equations:

Imw2 = |z|2, Imw3 = 2 Re(z2z), (z,w2,w3) ∈ C
3.

This notation is associated with the following natural gradation of the coordinates
in C

3:

[z] = 1, [w2] = 2, [w3] = 3. (1)

The polynomials Imw2 − |z|2 and Imw3 − 2 Re(z2z) are homogeneous under this
gradation and hence the cubic admits an action of the following group of dilations:

z −→ λz, w2 −→ λ2w2, w3 −→ λ3w3, λ ∈ R
∗. (2)

This group is the isotropy subgroup G0 of the origin in the 5-dimensional group
G = Aut(C). G is a semidirect product of G0 and the following polynomial group
G−, providing the homogeneity of the cubic:

z 
→ z + p,

w2 
→ w2 + 2ip̄z + i|p|2 + q2, (3)

w3 
→ w3 + 4(Rep)w2 + 2i(2|p|2 + p̄2)z + 2ip̄z2 + 2i Re(p2p̄) + q3,

where p ∈ C, qj ∈ R.

The infinitesimal automorphism algebra g of the cubic, which can be naturally
identified with the tangent algebra of G, is a graded Lie algebra of the kind

g = g−3 + g−2 + g−1 + g0,

where the gradation for monomials is taken from (1), and the basic differential oper-
ators are graded in the following way:

[
∂

∂z

]
= −1,

[
∂

∂w2

]
= −2,

[
∂

∂w3

]
= −3.

The basic vector fields from g look as follows (we skip the operator 2 Re(·)):

X3 = ∂

∂w3
, X2 = ∂

∂w2
,

X′
1 = i

∂

∂z
+ 2z

∂

∂w2
+ 2z2 ∂

∂w3
,
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X1 = ∂

∂z
+ 2iz

∂

∂w2
+ (

4w2 + 2iz2) ∂

∂w3
,

X0 = z
∂

∂z
+ 2w2

∂

∂w2
+ 3w3

∂

∂w3
.

Here g−3 is spanned by X3,g−2 = 〈X2〉,g−1 = 〈X1,X
′
1〉,g0 = 〈X0〉. Since g0 is

Abelian, the algebra g is solvable. Also note that

〈X3,X2,X
′
1〉

is an Abelian ideal in g.
The subalgebra g0 is the isotropy subalgebra of the origin and hence corresponds

to the subgroup G0, the nilpotent ideal g− = g−3 +g−2 +g−1 corresponds to the sub-
group G− (this ideal coincides with the unique irreducible 4-dimensional nilpotent
real Lie algebra).

The natural action of G in the ambient space is given as a composition of actions
(2) and (3). Note that the polynomial P = Imw2 − |z|2 is a relative invariant of this
natural action of weight 2 (more precisely, each transformation from G multiplies it
by λ2). Hence we have 3 kinds of orbits: those lying in the domain Imw2 − |z|2 > 0
(case 1—orbits “over the ball”), those lying in the domain Imw2 −|z|2 < 0 (case 2—
orbits “over the complement to the ball”), and those lying over the quadric Imw2 −
|z|2 = 0 (case 3—orbits “over a sphere”).

CASE 1 In this case, as was shown in [6], for a point (a, b, c), Imb > |a|2 we get
the following orbits:

Imw3 = −2 Re z2z̄ + 4 Re z Imw2 + |μ|(Imw2 − |z|2) 3
2 ,

Imw2 > |z|2, μ ∈ R.

Any orbit is an open smooth part of the real-analytic set

(Imw3 − 4 Re z Imw2 + 2|z|2 Re z)2 = μ2(Imw2 − |z|2)3,

lying over P > 0.
Any such orbit except the one with μ = 0 has two connected components, cor-

responding to two μ with opposite signs. They can be mapped to each other by the
linear automorphism of the cubic

z → −z, w2 → w2, w3 → −w3. (4)

Orbits corresponding to different μ2 are clearly different. Hence the family of orbits
is parameterized by the non-negative parameter μ2.

The Levi forms of the orbits are as follows:

−3

2
μ|z|2 + izw̄2 − iw2z̄ + 3

16
μ|w2|2.

Then for each μ the orbits are homogeneous hypersurfaces with non-degenerate
indefinite Levi form.
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CASE 2. In this case, as was shown in [6], for a point (a, b, c), Imb < |a|2 we get
the following orbits:

Imw3 = −2 Re z2z̄ + 4 Re z Imw2 + |ν|(|z|2 − Imw2)
3
2 ,

Imw2 > |z|2, ν ∈ R.

Any such orbit is an open smooth part of a real-analytic set

(Imw3 − 4 Re z Imw2 + 2|z|2 Re z)2 = ν2(|z|2 − Imw2)
3,

lying over P < 0.
Any orbit except the one with ν = 0 has two connected components, correspond-

ing to two ν with opposite signs. They can be mapped to each other by the linear
automorphism (4) of the cubic. Orbits corresponding to different ν2 are clearly dif-
ferent. Hence the family of orbits is parameterized by the non-negative parameter ν2.

The Levi form in this case equals

3

2
ν|z|2 + izw̄2 − iw2z̄ + 3

16
ν|w2|2.

The determinant of the Levi form is ( 9
32ν2 − 1). Hence for ν2 > 32

9 the hypersur-
faces are strictly pseudoconvex; for ν2 = 32

9 the orbit is Levi-degenerate, the Levi
form has one non-zero eigenvalue; for ν2 < 32

9 the orbits have indefinite Levi form.
CASE 3. In this case, straightforward calculations show that the values of the vec-

tor fields, which form the basis of the algebra g, have rank 4 at each point on the
cubic and rank 5 at each point outside the cubic. Hence the cubic is the only singular
orbit of dimension 4. As it was shown in [6], there are two orbits in that case:

Imw2 = |z|2, Imw3 = 2 Re(z2z̄)

– the cubic, and

Imw2 = |z|2, Imw3 �= 2Re(z2z̄)

– the complement to the cubic on the cylindric surface Imw2 = |z|2. The second
orbit has two connected components, which can be mapped to each other by the
linear automorphism (4) of the cubic.

To characterize globally the foliation of the space C3, given by the group G,
note that the polynomial

Q = Imw3 − 4 Re z Imw2 + 2|z|2 Re z

is also a relative invariant of the action (2)–(3) of weight 3. In terms of the relative
invariant polynomials, the orbits “over the ball” are given by the condition

Q2 = μ2P 3, P > 0,
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Fig. 1 The orbit space in
(P,Q)-coordinates

the orbits “over the complement to the ball” are given by the condition

Q2 = ν2(−P)3, P < 0,

the orbits “over the sphere” are given by the condition

P = Q = 0

– the cubic, and

Q �= 0, P = 0

– the complement to the cubic. The obtained description of the foliation is illustrated
by Fig. 1.

Also note the following fact: the cubic C is the boundary of any orbit, and, roughly
speaking, any two orbits M,M ′ “meet at C”, but the union M ∪M ′ ∪Q does not form
a smooth hypersurface (moreover, this union does not also decompose to smooth hy-
persurfaces), except the case μ = ν = 0, when this union forms the smooth hypersur-
face

Q = Imw3 − 4 Re z Imw2 + 2|z|2 Re z = 0. (5)

Now we give a tube realization for the obtained foliation in C
3, generated by the

group G. To do so, remember that one of the obtained orbits—corresponding to ν =
4
√

2
3 —is Levi degenerate with Levi form of rank 1. For a hypersurface in C

3 with Levi
form of rank 1 we have the following dichotomy: it may be either holomorphically
degenerate (in this case it is locally biholomorphically equivalent to the direct prod-
uct of a hypersurface in C

2 and the complex plane, like the 5-dimensional orbit from
case 3), or it is holomorphically non-degenerate and in this case it is 2-nondegenerate
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(see [2]). It can be checked that our orbit (denote it by M) is 2-nondegenerate. The list
of 2-nondegenerate homogeneous surfaces, obtained in [13], consists of one surface
with 5-dimensional stabilizer (the tube over the future light cone), and some surfaces
with trivial stabilizer. Hence M is either isomorphic to the tube over the future light
cone or it has trivial stabilizer and hence is isomorphic to one of the remaining sur-
faces in the mentioned list. It is shown in the next section that M actually has trivial
stabilizer and its infinitesimal automorphism algebra coincides with g, so the sec-
ond possibility holds. It follows from [13] that only one surface in the list—namely
the one from Example 8.5—has an infinitesimal automorphism algebra, isomorphic
to g, which proves that M is locally biholomorphically equivalent to the surface from
Example 8.5 (denote it by M̃). This surface is a tube over the following affinely ho-
mogeneous hypersurface in R

3:

F = {c(t) + rc′(t) ∈ R
3 : r > 0, t ∈ R}, c(t) = (1, t, t2).

The infinitesimal automorphism algebra g̃ of M̃ has the following:

X3 = ∂

∂z3
, X2 = ∂

∂z2
, X′

1 = ∂

∂z1
,

X1 = i
∂

∂z1
+ 2z1

∂

∂z2
+ 3z2

∂

∂z3
,

X0 = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3
.

Since M̃ and M are locally biholomorphically equivalent, there exists a biholo-
morphic transformation, defined in a neighborhood of a point from M̃ , which maps
this algebra onto g. Straightforward calculations show that the mapping

z = αz1, w2 = γ z2 + βz2
1, w3 = δz3 + εz3

1 (6)

with α = − i√
2
, γ = 1, β = i

2 , δ = 2
√

2
3 , ε =

√
2

6 indeed maps g̃ onto g and hence

M̃ onto M . This fact gives another possibility to prove that M is 2-nondegenerate
(using the fact that M̃ is 2-nondegenerate). Note that the mapping (6) is a bi-
holomorphic mapping of C

3 onto itself. In particular, it is a global isomorphism
of M̃ and M and the inverse mapping translates all the orbits from cases 1–3 to
some tube homogeneous manifolds in C

3. The corresponding foliation of C
3 con-

sists of the hypersurfaces N±
μ ,N0 (see the Introduction) and one 4-dimensional or-

bit C̃ = {y2 = y2
1 , y3 = y3

1}. All N+
μ are Levi-indefinite, N−

μ are Levi-indefinite for
μ < 4, strictly pseudoconvex for μ > 4 and 2-nondegenerate for μ = 4. The surface
M̃ coincides with N−

4 and, unlike all other orbits N±
μ , which are given by equations

of degree 6, this orbit is given by an equation of degree 4 (and of weight 6):

y2
3 − 3y2

1y2
2 − 6y1y2y3 + 4y3

1y3 − 4y3
2 = 0.
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Remark 2.1 It is a very remarkable fact that the mapping (6) transforms the cubic C

to the tube C̃ over the standard twisted cubic

y2 = y2
1 , y3 = y3

1

from R
3.

Remark 2.2 The approach to the construction of homogeneous manifolds, used in
[6], can be generalized to other dimensions and model algebras (see [4, 5] for the
details of the general notion of a model manifold) and can be used as a “machinery”
for the construction of homogeneous CR-manifolds with a “good” Lie transformation
group, acting on them transitively.

3 Automorphism Groups of the Orbits and Their Holomorphic Classification

In this section we classify the homogeneous hypersurfaces, obtained in the previ-
ous section, up to local biholomorphic equivalence and compute their automorphism
groups. In particular, an analogue of the Poincaré-Alexander theorem is proved for
the orbits.

We parameterize the orbits from cases 1 and 2 by a non-negative parameter μ and
denote them by M+

μ and M−
μ correspondingly. Also we denote the hypersurface type

orbit from case 3 by M0.
To classify the orbits we first prove two lemmas.

Lemma 3.1 The infinitesimal automorphism algebra of any orbit from cases 1 and 2
is a finite-dimensional algebra of polynomial vector fields.

Proof All hypersurfaces from cases 1 and 2 are Levi non-degenerate, except M−
32/9.

As it follows from Sect. 1, the hypersurface M−
32/9 is 2-nondegenerate. Hence, accord-

ing to [2], any M±
μ has finite-dimensional infinitesimal automorphism algebra. This

algebra contains the algebra g of infinitesimal automorphisms of the cubic. For each
orbit make a translation, which sends the point (0,±i, i

√
μ) on the orbit to the origin.

We obtain a surface, whose infinitesimal automorphism algebra is finite-dimensional
and contains the vector fields

∂

∂w2
,

∂

∂w3

(they come from the translations from g) and the vector field

z
∂

∂z
+ 2w2

∂

∂w2
+ 3w3

∂

∂w3
± 2i

∂

∂w2
+ 3i

√
μ

∂

∂w3

(it comes from the dilation field X0 ∈ g). Hence the new surface contains the origin
and its complexified infinitesimal automorphism algebra contains the dilation vector
field

A = z
∂

∂z
+ 2w2

∂

∂w2
+ 3w3

∂

∂w3
.
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Introducing weights for the variables and the corresponding weights for the basic
differential operators as in Sect. 2, for a vector field Xk of weight k we have

[A,Xk] = kXk.

Then, expanding any vector field X from the complexified algebra to a convergent
series X−3 + X−2 + X−1 + · · · near the origin, we get

[A,X] =
∞∑

k=−3

kXk.

Hence, considering the minimal polynomial p of the linear operator adA on the com-
plexified algebra, we have

0 = p(adA)(X) =
∞∑

k=−3

p(k)Xk,

but p(k) = 0 only for a finite set of integers, hence we get Xk = 0 for k bigger than
some k0, which means that X is polynomial, so the complexified algebra of the new
surface is polynomial, and we can state the same for the infinitesimal automorphism
algebra of the original surface, as required (see also the remark after Corollary 4.3
in [13]). �

Lemma 3.2 Suppose that F is a biholomorphic transformation, which maps a germ
of an orbit M±

μ to a germ of an orbit M±
ν . Then F is a birational transformation of

the ambient space C
3.

Proof In [3] the same statement was proved for a biholomorphic isomorphism F of
two germs of cubics. This proof uses two facts:

(1) The infinitesimal automorphism algebras of both surfaces are finite-dimensional
and polynomial.

(2) The infinitesimal automorphism algebras of both surfaces contain vector fields of
the kind X3, . . . ,X0.

In our case it follows from Lemma 3.1 that we can state the same, hence we obtain
the necessary property for F , as required. �

Now we can prove the main statement of this section.

Theorem 3.3 (1) Two orbits M±
μ and M±

ν are locally biholomorphically equivalent

if and only if they coincide, except the case M+
0 ∼ M−

0 , when both orbits are locally
biholomorphically equivalent to the indefinite quadric Im z3 = |z1|2 − |z2|2 in C

3.
(2) All local automorphisms of an orbit M±

μ belong to G and hence the local auto-
morphism group of M±

μ coincides with the identity component of G, except the case
μ = 0, when the local automorphism group is the image of the identity component
of the 15-dimensional automorphism group of the indefinite quadric in C

3 (see, for
example, [5]) under a polynomial transformation.
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Proof Consider a biholomorphic transformation F , which maps a germ of an orbit
M±

μ to a germ of an orbit M±
ν , where μ > 0. By Lemma 3.2 F is a birational trans-

formation of the ambient space C
3. Denote by S the singular set of F . Since the

orbits are holomorphically non-degenerate, they cannot contain an analytic set of di-
mension 2, hence M±

μ /S is connected. Also, since F is rational and maps a germ of
M±

μ to a germ of M±
ν , from the real-analyticity of the orbits we can conclude that F

maps M±
μ /S to an open part of M±

ν . Further note that the cubic C is generic, so it
cannot lie in a proper complex analytic subset of C

3, hence there exists an open part
of the cubic such that F is biholomorphic in a neighborhood of this part (since F is
rational). Such a neighborhood contains an open part of M±

μ /S, because the cubic
is the boundary of M±

μ . This boundary part (since it is essentially singular for M±
μ ,

i.e., M±
μ cannot be extended smoothly to any neighborhood of any point in the cubic)

must go to the essentially singular (in the above sense) boundary part of M±
ν . Hence,

for ν > 0 F must map an open piece of the cubic to an open piece of the cubic, which
implies (see [3]) that F is actually an automorphism of the cubic. This automorphism
preserves all orbits, hence our 2 orbits are locally biholomorphically equivalent if and
only if they coincide, and in the last case the corresponding biholomorphic automor-
phism of a germ of an orbit must belong to the automorphism group of the cubic.
For ν = 0 we conclude that such an F does not exist (since M±

0 has no singular
boundary part in the above sense). So in the case ν = 0 the orbits M±

μ and M±
ν are

locally biholomorphically inequivalent. It means that different orbits M±
μ and M±

ν

are locally biholomorphically inequivalent except, maybe, the case μ = ν = 0, and
the automorphism group of a germ of any M±

μ for μ �= 0 coincides with the identity
component of the group G. To complete the proof we show that the hypersurface (5)
is polynomially equivalent to the indefinite quadric in C

3 (this is sufficient since M±
0

are open parts of this hypersurface, and the quadric is homogeneous).
Considering (5), after a polynomial change of variables, which annihilates the

pluriharmonic terms in the quadratic form 4 Re z Imw2, we obtain the following sur-
face:

Imw3 = izw2 − izw2 − z2z − z2z.

The expression on the right-hand side can be presented as 2 Re(z(−iw2 − z2)). So
the polynomial transformation

z → z, w2 → −iw2 − z2

transforms our surface to the quadric Imw3 = 2Re(zw2), which is linearly equivalent
to the indefinite quadric Imw3 = |z|2 − |w2|2, as required. �

Corollary 3.4 All the orbits M±
μ for μ > 0 have the property, which is analogous

to the Poincaré-Alexander theorem for hyperquadrics: any biholomorphic automor-
phism of a germ of an orbit extends to a global automorphism.

Corollary 3.5 All the orbits M±
μ for μ > 0 are holomorphically rigid.
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Proof The statement of the corollary follows from the theorem and the fact that the
group G acts effectively on the orbits from cases 1 and 2. �

It is obvious that the same statements hold also for the tube manifolds N±
μ : all N±

μ

are pairwise locally biholomorphically inequivalent except the case N+
0 ∼ N−

0 . For
μ > 0 their local automorphisms turn out to be global, and the local automorphism
groups coincide with the identity component of the image G̃ of the group G under
the transformation (6). This image is a semidirect product of the normal subgroup,
generated by

z1 −→ z1 + a1, z2 −→ z2 + a2, z3 −→ z3 + a3, aj ∈ R

real translations;

z1 → z1 + it, z2 → z2 + 2tz1 + it2,

z3 → z3 + 3tz2 + 3t2z1 + it3, t ∈ R

“translations” along the imaginary direction, and the subgroup of weighted dilations

z1 → λz1, z2 → λ2z2, z3 → λ3z3, λ ∈ R
∗. (7)

All N±
μ for μ > 0 are holomorphically rigid. The manifolds N±

0 are locally poly-
nomially equivalent to the indefinite quadric in C

3. Their local automorphism groups
are 15-dimensional and coincide with the identity component of the image of the
automorphism group of the indefinite quadric under a polynomial transformation.

Remark 3.1 As well as the claim of Remark 2.1, it is a very remarkable fact that the
mapping (6) transforms the automorphism group G of the cubic to the group G̃, thus
giving the model group G an affine realization.

4 Local Transitive Actions of the Model Algebra g on Hypersurfaces in C
3

In the paper [6] and in Sects. 2 and 3 of the present paper the natural action of the
model algebra g in the complex space C

3 was studied and two collections of homo-
geneous holomorphically non-degenerate hypersurfaces in C

3, on which the algebra
g acts transitively, were studied and classified. It is natural to ask now if all pos-
sible transitive actions of this algebra and all possible homogeneous hypersurfaces
with transitively acting Lie algebra g have been found. More precisely, it is natural to
formulate the following two problems:

(1) To classify all possible local transitive actions of the model algebra g on hyper-
surfaces in C

3 up to local biholomorphic equivalence.
(2) To classify up to local biholomorphic equivalence all locally homogeneous hy-

persurfaces in C
3, admitting a local transitive action of the model algebra g

(g-homogeneous hypersurfaces).
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Clearly, obtaining the first desired classification, we reduce the second problem to
local holomorphic classification of the orbits of all possible actions.

We specify that we call two local holomorphic actions of a finite-dimensional real
Lie algebra h on C

N
p1

and C
N
p2

equivalent, if there is a local biholomorphic mapping
F of C

N
p1

to C
N
p2

, which translates the first action to the second one, i.e., such that
ϕ2 ◦ τ = F ∗ ◦ ϕ1, where ϕ1, ϕ2 are the homomorphisms of the algebra h to the al-
gebras of germs of holomorphic vector fields in the points p1,p2 correspondingly,
F ∗ is the natural homomorphism of the algebras of germs of holomorphic vector
fields, induced by F , τ is an automorphism of the Lie algebra h. In other words, it
means that two realizations of h as an algebra of germs of holomorphic vector fields
are translated to each other by some biholomorphic transformation. Hence the first
classification problem is reduced to the following one:

to classify up to local biholomorphic equivalence all realizations of the Lie al-
gebra g as an algebra of holomorphic vector fields, defined in a neighborhood of a
point p ∈ C

3, such that their values at the point p (and hence at any point from a
neighborhood of p) form a real hypersurface in C3 (and hence in a neighborhood
of p).

So, we take any algebra of the form specified above, defined in a neighborhood
U of a point p ∈ C

3. Take 5 vector fields X3,X2,X1,X
′
1,X0, corresponding by the

isomorphism of Lie algebras to the five basic vector fields from g, specified in Sect. 2.
Then we have the following relations:

[X3,X2] = 0 (32)

[X3,X1] = 0 (31)

[X3,X
′
1] = 0 (31′)

[X3,X0] = 3X3 (30)

[X2,X1] = 2X3 (21)

[X2,X
′
1] = 0 (21′)

[X2,X0] = 2X2 (20)

[X1,X
′
1] = 4X2 (11′)

[X1,X0] = X1 (10)

[X′
1,X0] = X′

1 (1′0).

Now we construct a suitable coordinate system for the algebra. To begin with, we
rectify X3 : X3 −→ ∂

∂z3
—this is possible since the values of our vector fields have

rank 5 in U . Let the other fields be:

X2 = f1
∂

∂z1
+ f2

∂

∂z2
+ f3

∂

∂z3
, X1 = g1

∂

∂z1
+ g2

∂

∂z2
+ g3

∂

∂z3
,

X′
1 = h1

∂

∂z1
+ h2

∂

∂z2
+ h3

∂

∂z3
, X0 = λ1

∂

∂z1
+ λ2

∂

∂z2
+ λ3

∂

∂z3
.
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Applying now (32), (31), (31′), (30), we get:

∂fj

∂z3
= 0,

∂gj

∂z3
= 0,

∂hj

∂z3
= 0,

∂λ1

∂z3
= 0,

∂λ2

∂z3
= 0,

∂λ3

∂z3
= 3.

After that we have two possibilities.
1. The field f1(z1, z2)

∂
∂z1

+f2(z1, z2)
∂

∂z2
is non-zero at p (general case). Then we

rectify this field and have

X2 = ∂

∂z2
+ f3(z1, z2)

∂

∂z3
.

(21) gives ∂g1
∂z2

= 0,
∂g2
∂z2

= 0. (21′) gives ∂h1
∂z2

= 0, ∂h2
∂z2

= 0, (20) gives ∂λ1
∂z2

= 0,
∂h2
∂z2

= 2, so now we have

X1 = g1(z1)
∂

∂z1
+ g2(z1)

∂

∂z2
+ g3(z1, z2)

∂

∂z3
,

X′
1 = h1(z1)

∂

∂z1
+ h2(z1)

∂

∂z2
+ h3(z1, z2)

∂

∂z3
,

X0 = λ1(z1)
∂

∂z1
+ (2z2 + λ1(z1))

∂

∂z2
+ (3z3 + λ3(z1, z2))

∂

∂z2
.

Further note that the equality g1 = h1 = 0 is impossible, because in that case
the values of our 5 vector fields have rank < 5. So considering, if necessary, a linear
combination X1 +aX′

1 instead of X1, which does not change the relations (32)–(1′0),
we may assume that g1 �= 0 at p and rectify the field g1

∂
∂z1

(the structure of all other
fields does not change after that), so now g1 = 1.

After that, considering (11′), we have dh1
dz1

= 0, dh2
dz1

− h1
dg2
dz1

= 4 ⇒ h1 =
s ∈ C;h2 = sg2 + 4z1 + m. Considering (10), we have dλ1

dz1
= 1, λ1 = z1 (making

a translation along z1 if necessary). Also we have (from (1′0)):
λ′

2 +2g2 −λ1g
′
2 = g2; sλ2 +2h2 −λ1h

′
2 = h2 ⇒ subtracting with the factor s, we

get 4z1 + m = 4λ1 ⇒ m = 0.
After that we kill g2, h2. To do so, make the variable change

z2 −→ z2 −
∫

g2dz1 ⇒

X3 −→ X3, X2 −→ X2,

X1 −→ ∂

∂z1
+ g3(z1, z2)

∂

∂z3
,

X′
1 −→ s

∂

∂z1
+ 4z1

∂

∂z2
+ h3(z1, z2)

∂

∂z3
,

X0 −→ X0.



Homogeneous Hypersurfaces in C
3, Associated with a Model 555

Of course, the functional parameters change, but their structure is the same. In the
same way after the change

z3 −→ z3 −
∫

f3(z1, z2)dz2 we have

X2 −→ ∂

∂z2
,X3 −→ X3,X1 −→ X1,X

′
1 −→ X′

1,X0 −→ X0.

Thus after all transformations

X3 = ∂

∂z3
, X2 = ∂

∂z2
,

X1 = ∂

∂z1
+ g3(z1, z2)

∂

∂z3
,

X′
1 = s

∂

∂z1
+ 4z1

∂

∂z2
+ h3(z1, z2)

∂

∂z3
,

X0 = z1
∂

∂z1
+ (2z2 + λ2(z1))

∂

∂z2
+ (3z3 + λ3(z1, z2))

∂

∂z3
.

Now from (21) we get ∂g3
∂z2

= 2; (21′) ⇒ ∂h3
∂z2

= 0; (20) ⇒ ∂λ3
∂z2

= 0. As a result we
have

X3 = ∂

∂z3
, X2 = ∂

∂z2
,

X1 = ∂

∂z1
+ (2z2 + g3(z1))

∂

∂z3
,

X′
1 = s

∂

∂z1
+ 4z1

∂

∂z2
+ h3(z1)

∂

∂z3
,

X0 = z1
∂

∂z1
+ (2z2 + λ2(z1))

∂

∂z2
+ (3z3 + λ3(z1))

∂

∂z3
.

So now we have just one-variable functions.
Considering (11′), h′

3 − sg′
3 − 8z1 = 0, h3 = sg3 + 4z2

1 + n.

(10) gives λ′
2 = 0, λ2 = 0 (after a translation), and also λ′

3 + 6z2 + 3g3 − z1g
′
3 −

4z2 = 2z2 + g3, λ
′
3 = z1g

′
3 − 2g3, λ3 = z1g3 − 3

∫
g3dz1.

Only one functional parameter g1 remains; we annihilate it by the variable change
z3 −→ z3 − ∫

g3dz1, which gives

X3 −→ ∂

∂z3
, X2 −→ ∂

∂z2
,

X1 = ∂

∂z1
+ 2z2

∂

∂z3
,

(8)

X′
1 = s

∂

∂z1
+ 4z1

∂

∂z2
+ (4z2

1 + n)
∂

∂z3
,
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X0 = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3

(the last equality follows from the formula for λ3 obtained above). Applying also
(1′0), we get n = 0 (it follows also from the weights consideration).

Thus we have a one-parameter collection of polynomial algebras. Clarify under
what assumptions they can be mapped to g—it is not a difficult question now, taking
the polynomiality into account.

Provided we have a biholomorphic mapping of one algebra to another one, we can
state, in particular, that the commutants must be preserved. It means that

X3 −→ a3
∂

∂w3
, X2 −→ a2

∂

∂w2
+ b2

∂

∂w3

(we put w1 := z), so

∂w1

∂z2
= 0,

∂w2

∂z3
= 0,

∂w1

∂z3
= 0,

∂w3

∂z3
= a3,

∂w2

∂z2
= a2,

∂w3

∂z2
= b2,

that is

w1 = F(z1),w2 = a2z2 + G(z1),w3 = a3w3 + b2w2 + H(z1).

Also, we can state that X1 must go to a field from the first commutant. Remem-
bering what such fields from g look like (see Sect. 2), we get

F ′(z1) = p,F = pz1

(without loss of generality we may assume F(0) = 0). Furthermore

G′(z1) = 2iw1p + c1 = 2i|p|2z1 + c1,G = i|p|2z2
1 + c1z1 + c2

and in addition

H ′ + 2z2a3 = ipw2
1 + 2 Repw2 + c3 = ip2pz2

1 + 2 Rep(a2z2 + G(z1)) + c3,

which implies

a3 = a2 Rep.

The field X′
1 goes to the first commutant as well, so first we have sp = p′ (p′ is

the new p for the field X′
1), and further

sG′ + 4a2z1 = 2iw1p′ + d1 = 2ipp′z1.

So remembering the formula for G′ we get

2ispp = 2ipp′ − 4a2 ⇒ a2 = i

2
(pps − pps) = |p|2Ims
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and finally

sH ′+4b2z1 +4a3z
2
1 = iw2

1 +2 Rep′w2 +d2 = ip2p′z2
1 +2 Rep′(a2z2 +G(z1))+d2,

so Rep′ = Re(ps) = 0, a3 = a2 Rep = |p|2 Im s Rep.
In particular, we see that Im s �= 0,Rep �= 0. To finish with X′

1 it just remains to
compare the two obtained formulas for H ′. Doing so we get

s(ip2p + 2i|p|2 Rep) = ip2ps − 4a3 ⇒ − 2|pp|2 Im s + 2is|p|2 Rep = −4a3.

Applying now the equalities a3 = |p|2 Im s Rep;Re(ps) = 0 we see that the obtained
above equality holds.

After all calculations we can state that for Im s = 0 the necessary transformation
is impossible. For all other s we can take p = i

s
, ci = di = 0, b2 = 0, and choose

a2, a3,G,H from the formulas obtained above. All we have to do now is to care
about X0. But one can easily check now that it is sent exactly to a vector field from g0.

So we have proved that for Im s �= 0 we have an equivalence of g and the algebra
under consideration. For all other s the algebras are inequivalent.

Now we clarify when two algebras with different s ∈ R are equivalent. First,
change the field X′

1 to the field 1
4 (X′

1 − sX1). After that, the field X′
1 has the form:

X′
1 = z1

∂

∂z2
+ (z2

1 − 2sz2)
∂

∂z3
.

All other fields are the same. After that, taking two algebras for different s �= 0, s1 =
s, s2 = t , make a linear change of variables:

w1 = z1; w2 = s

t
z2; w3 = s

t
z3,

then X3,X2 dilate, X1,X0 are the same, X′
1 for s go to X′

1 for t . It means that such
two algebras have the same action in C

3.
Thus, in the general case we have 3 algebras: A(s = i),A0(s = 0),A1(s = 1).

Now we finally simplify the algebras A0 and A1 (we suppose A to be simplified
as g̃).

For A1, putting s = 1 in (8), after a suitable linear change we come to the following
vector field algebra:

X3 = ∂

∂z3
, X2 = ∂

∂z2
, X1 = ∂

∂z1
+ 2z2

∂

∂z3
,

X′
1 = s

∂

∂z1
+ z1

∂

∂z2
+ z2

1
∂

∂z3
, X0 = z1

∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3
.

Making the polynomial transformation

z1 −→ z1, z2 −→ z2 − z2
1

2
, z3 −→ z3 − z3

1

3
,
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we see that X3 −→ X3,X2 −→ X2,X
′
1 −→ ∂

∂z1
,X1 −→ ∂

∂z1
− z1

∂
∂z2

+ 2z2
∂

∂z3
,

X0 −→ X0. Finally we have (after a linear change):

X3 = ∂

∂z3
, X2 = ∂

∂z2
, X′

1 = ∂

∂z1
,

X1 = ∂

∂z1
+ z1

∂

∂z2
+ 2z2

∂

∂z3
, (9)

X0 = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3

(of course, the vector fields in (9) have different commuting relations from (32)–(1′0),
but the algebra that they generate is the same).

For A0 after a linear change we have:

X3 = ∂

∂z3
, X2 = ∂

∂z2
,

X1 = ∂

∂z1
+ 2z2

∂

∂z3
,

(10)

X′
1 = z1

∂

∂z2
+ z2

1
∂

∂z3
,

X0 = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3
.

It is shown below that 3 obtained vector field algebras are inequivalent (it just
remains to prove that A0 and A1 are inequivalent).

2. The vector field f1(z1, z2)
∂

∂z1
+ f2(z1, z2)

∂
∂z2

vanishes at p (degenerate case).

In that case we rectify h1(z1, z2)
∂

∂z1
+ h2(z1, z2)

∂
∂z2

(it’s non-zero at p because oth-
erwise the rank of the values of our 5 vector fields is less than 5).

After that, applying (21′), (1′0), (11′), we get ∂f3
∂z1

= 0; ∂λ1
∂z1

= 1; ∂λ2
∂z1

= 0;
∂g1
∂z1

= 0; ∂g2
∂z1

= 0. Also, we can rectify g2(z2)
∂

∂z2
(g2|p �= 0 because of the rank).

As a result we have

X2 = f3(z2)
∂

∂z3
, X1 = g1(z1)

∂

∂z1
+ ∂

∂z2
+ g3(z1, z2)

∂

∂z3
,

X0 = (z1 + λ1(z2))
∂

∂z1
+ λ2(z2)

∂

∂z2
+ (3z3 + λ3(z1, z2))

∂

∂z3
.

Now (21) gives −f ′
3 = 2; (20) gives 3f3 − λ2f

′
3 = 2f3, so

f3 = −2z2 + m; λ2 = z2 − m/2.

After a translation m = 0. So we have

X2 = −2z2
∂

∂z3
, X0 = (z1 + λ1(z1))

∂

∂z1
+ z2

∂

∂z2
+ (3z3 + λ3)

∂

∂z3
.
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Making the variable change w1 = z1 − ∫
g1dz2, we have ∂

∂z2
−→ ∂

∂w2
− g1

∂
∂w1

,

so X1 −→ ∂
∂z2

+ g3
∂

∂z3
and, applying (10), we get λ′

2 = 0, λ2 = 0 (after a translation)
and as a result

X0 = z1
∂

∂z1
+ z2

∂

∂z2
+ (3z3 + λ3)

∂

∂z3
.

In the same way, to kill h3 we make the variable change w3 = z3 − ∫
h3dz1 ⇒

∂
∂z1

−→ ∂
∂w1

− h3
∂

∂w3
and we get

X3 = ∂

∂z3
, X2 = −2z2

∂

∂z3
,

X′
1 = ∂

∂z1
, X1 = ∂

∂z2
+ g3

∂

∂z3
,

X0 = z1
∂

∂z1
+ z2

∂

∂z2
+ (3z3 + λ3)

∂

∂z3
.

After that (1′0) gives ∂λ3
∂z1

= 0; (11′) gives − ∂g3
∂z1

= −8z2 ⇒ λ3 = λ3(z2), g3 =
8z1z2 +ϕ(z2). (10) gives ∂λ3

∂z2
+3g3 −z1

∂g3
∂z1

−z2
∂g3
∂z2

= g3, λ
′
3 +16z1z2 +2ϕ−8z1z2 −

8z1z2 − z2ϕ
′ = 0, λ′

3 = z2ϕ
′ − 2ϕ,λ3 = z2ϕ − 3

∫
ϕdz2.

It means that X1 = ∂
∂z2

+ (8z1z2 + ϕ) ∂
∂z3

, and after the variable change w3 =
z3 −∫

ϕdz2,
∂

∂z2
−→ ∂

∂w2
−ϕ ∂

∂w3
we get X0 −→ w1

∂
∂w1

+w2
∂

∂w2
+ (−ϕw2 +3w3 +

3
∫

ϕdz2 + w2ϕ − 3
∫

ϕdz2)
∂

∂w3
and finally (after a dilation along z3 and a linear

transformation in the algebra)

X3 = ∂

∂z3
, X′

1 = ∂

∂z1
,

X2 = z2
∂

∂z3
, X1 = ∂

∂z2
+ z1z2

∂

∂z3
,

X0 = z1
∂

∂z1
+ z2

∂

∂z2
+ 3z3

∂

∂z3
.

We denote this algebra by B . So we have proved that there are four possible types
of local transitive actions of the algebra g on hypersurfaces in C

3 : A0,A1,A,B. It is
shown in the next section that these four types are actually inequivalent.

Remark 4.1 Note that the three commuting vector fields X3,X2,X
′
1, as the case A0

shows, may be linearly dependent over C at p and it is impossible to rectify them
simultaneously in this case.
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5 Homogeneous Hypersurfaces Associated with the Model Algebra:
Explicit Presentation, Automorphism Groups and Holomorphic
Classification

In this section we present the orbits of the obtained holomorphic vector field algebras
A0,A1,A,B explicitly, classify the orbits and compute their infinitesimal automor-
phism algebras (and hence the local automorphism groups). It also allows us to prove
the non-equivalence of the algebras A0,A1,A,B .

Now we study each of the actions A0,A1,A,B separately.
CASE A. As it was proved in the previous section, the algebra A is equivalent to

the algebras g and g̃. So a transitive action of each algebra of the type A on hyper-
surfaces in C

3 is equivalent to the action of the algebra g̃ near a point p ∈ C
3, which

satisfies (Imp2 − (Imp1)
2)2 + (Imp3 − (Imp1)

3)2 > 0. The collection of orbits is
{N+

μ ,N−
μ ,N0},μ ≥ 0. The automorphism groups of the orbits (and hence the corre-

sponding infinitesimal automorphism algebras) and their classification were specified
in Sect. 3.

CASE A1. The vector field algebra (9) (we also denote it by A1) acts transitively on
hypersurfaces in C

3 in a neighborhood of any point p ∈ C
3 such that Imp1 �= 0. The

corresponding transformation group is a semidirect product of the normal subgroup,
generated by the subgroups

z1 −→ z1 + a1, z2 −→ z2 + a2, z3 −→ z3 + a3,

aj ∈ R—real translations;
z1 −→ z1 + t, z2 −→ z2 + tz1 + t2/2,

z3 −→ z3 + 2tz2 + t2z1 + t3/3, t ∈ R,

and the subgroup of weighted dilations

z1 → λz1, z2 → λ2z2, z3 → λ3z3, λ ∈ R
∗.

The foliation to orbits is as specified in the main theorem. Also note that all Sγ

with γ > 0 are linearly equivalent to S1, all Sγ with γ < 0 are linearly equivalent to
S−1 by means of the linear transformations

z1 −→ z1, z2 −→ 1

|γ |z2, z3 −→ 1√|γ |z3,

S0 is locally linearly equivalent to the tube

S =
{
y2

3 = y2
1 + y2

2 , y3 > 0
}

over the future light cone (see [12] for more information about S and S0).
It is easy to see that S1 is strictly pseudoconvex, and S−1 has indefinite Levi form

in all points. S0 is Levi degenerate; more precisely, it is 2-nondegenerate. Hence
S1, S−1 and S0 are locally biholomorphically inequivalent.

Now we compute the infinitesimal automorphism algebras of S1 and S−1 (the
infinitesimal automorphism algebra of S0 is well-known; see [12]).
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Proposition 5.1 The infinitesimal automorphism algebras of the orbits S1 and S−1
coincide with the algebra A1, so the homogeneous hypersurfaces S1 and S−1 are
holomorphically rigid.

Proof Our arguments are similar to the proof of Lemma 3.1. First note that both
S1 and S−1 are Levi non-degenerate, hence their infinitesimal automorphism alge-
bras are finite-dimensional. These two algebras contain A1. Now make a translation,
which sends a point on a surface (say, on S1) to the origin. In the same way as in
Lemma 3.1 we conclude that the complexified algebra h of the new surface then
contains the vector field

A = z1
∂

∂z1
+ 2z2

∂

∂z2
+ 3z3

∂

∂z3

and hence, by introducing the corresponding weights as in Lemma 3.1, we conclude
the complexified infinitesimal automorphism algebra h of the new surface and the
infinitesimal automorphism algebra t of S1 are polynomial.

Now taking an arbitrary polynomial q and expanding, using the polynomiality, a
vector field X ∈ t as X−3 + X−2 + · · · + Xk0 , where each polynomial vector field Xj

has weight j , we get (since A ∈ t):

q(adA)(X) =
k0∑

k=−3

q(k)Xk ∈ t.

Since the polynomial q is arbitrary, we conclude that each Xk ∈ t. It means that t

is a finite-dimensional graded Lie algebra of the kind

t−3 + t−2 + · · · + tk0 .

Now we compute the graded components of the algebra t. Any element of t is a
polynomial vector field

f
∂

∂z1
+ g

∂

∂z2
+ h

∂

∂z3
,

where f (z), g(z), h(z) are polynomials, which satisfy the tangency condition:

Imh = 3y2
1 Imf (z) + 2y2

y1
Img − y2

2

y2
1

Imf, z ∈ S1.

Any vector field from t−3 has the form a ∂
∂z3

. From the tangency condition we get
a ∈ R, so t−3 coincides with the (−3)-component of A1. Any vector field from t−2
has the form b ∂

∂z2
+ cz1

∂
∂z3

. From the tangency condition we get b ∈ R, c = 0, so t−2
coincides with the (−2)-component of A1. Any vector field from t−1 has the form
a ∂

∂z1
+ bz1

∂
∂z2

+ (cz2
1 + dz2)

∂
∂z3

. The tangency condition looks like

Im(cz2
1 + dz2) = 3y2

1 Ima + 2
y2

y1
Im(bz1) − y2

2

y2
1

Ima,
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which follows c = Ima = Imb = Imd = 0, d = 2b and hence t−1 coincides with the
(−1)-component of A1. In the same way, from the tangency condition and relations of
the kind [ti ,Xj ] ⊂ ti+j , applied to a vector field Xj from a current graded component
and a graded component ti obtained before, we conclude, that t0 coincides with the
0-component of A1, and also t1 = t2 = t3 = 0. Now we prove by induction that tk = 0
for k ≥ 3. Since the base is proved, it remains to make an induction step, so we
suppose that we have tj = 0 for 1 ≤ j ≤ k, k ≥ 3. Take a vector field X ∈ tk+1.
Then we have [X, ∂

∂z1
] ∈ tk and hence [X, ∂

∂z1
] = 0, from which it follows that the

coefficients of X do not depend on z1. Also we get [X, ∂
∂z2

] ∈ tk−1, so [X, ∂
∂z2

] = 0

and the coefficients of X do not depend on z2, and finally [X, ∂
∂z3

] ∈ tk−2 and hence

[X, ∂
∂z3

] = 0, from which it follows that the coefficients of X do not depend on z3.
Since all the coefficients in X consist of monomials of positive degree, we conclude
that X = 0, so tk = 0 for k > 0. It means that all the graded components of t coincide
with the graded components of A1, and hence t = A1, as required. The proof for the
case of S−1 is the same. �

Remark 5.1 This proof is a modification of the proof of Proposition 4.2 in [13].

CASE A0. The vector field algebra (10) acts transitively on hypersurfaces in C
3 in

a neighborhood of any point p ∈ C
3 such that Imp1 �= 0. The corresponding trans-

formation group is a semidirect product of the normal subgroup, generated by the
subgroups

z1 −→ z1, z2 −→ z2 + a2, z3 −→ z3 + a3, aj ∈ R—real translations;
z1 −→ z1 + t, z2 −→ z2, z3 −→ z3 + 2tz2, t ∈ R;
z1 −→ z1, z2 −→ z2 + rz1, z3 −→ z3 + rz2

1, r ∈ R,

and the subgroup of weighted dilations

z1 → λz1, z2 → λ2z2, z3 → λ3z3, λ ∈ R
∗.

The foliation to orbits is as specified in the main theorem. Now we classify the
orbits Qβ .

Proposition 5.2 All the orbits Qβ are locally polynomially equivalent to the indefi-
nite quadric in C

3.

Proof Making a polynomial transformation, which annihilates the pluriharmonic
terms on the right-hand side of the defining equation of Qβ , for each β we (locally)
get the following surface:

y3 = 3β

4
Im(z2

1z1) − 1

4
Im(z1z2).

The right-hand side of the last equality can be presented as

−1

4
Im

(
z1(3βz2

1 + z2)
)

,
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so the invertible polynomial transformation

z1 −→ z1, z2 −→ −3β

4
z2

1 − 1

4
z2

transforms our surface to the quadric y3 = Im(z1z2), which is clearly linearly equiv-
alent to the standard indefinite quadric

y3 = |z1|2 − |z2|2

in C3. The proposition is proved. �

CASE B . The vector field algebra, corresponding to B, acts transitively on a hy-
persurface in C

3 in a neighborhood of any point p ∈ C
3 such that Imp1 Imp2 �= 0.

The corresponding local transformation group is generated by the following transfor-
mation groups:

z1 −→ z1 + a1, z2 −→ z2, z3 −→ z3 + a3, aj ∈ R—real translations;
z1 → λz1, z2 → λz2, z3 → λ3z3, λ ∈ R

∗—weighted dilations;
z1 −→ z1, z2 −→ z2, z3 −→ z3 + rz2, r ∈ R;
z1 −→ z1, z2 −→ z2 + t, z3 −→ z3 + tz1z2 + t2z1/2, t ∈ R.

The foliation to orbits is as specified in the main theorem. So in case B all orbits
are locally linearly equivalent to the real hyperplane y3 = 0.

Collecting all obtained results, we can prove the main theorem.

Proof To prove (1) it remains to prove that A1 � A0 and that B is not equivalent
to each of the A-actions. The first claim follows from the fact that any orbit of A1
is locally non-equivalent to any orbit of A0, and the same for the second claim: all
orbits in B are Levi-flat, all orbits for A-actions are not Levi-flat.

To prove (2) it remains to prove that no manifold from case (a) is equivalent to
one of the manifolds from case (b) (the non-equivalence between manifolds from the
same case was proved above, the non-equivalence for other pairs of manifolds follows
from the description of the infinitesimal automorphism algebras). Such equivalence
is impossible because all manifolds in cases (a) and (b) are holomorphically rigid,
which implies that an equivalence mapping between two manifolds is an equivalence
mapping between vector field algebras A1 and A, which are inequivalent (see Sect. 4).

This completely proves the theorem. �
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