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Abstract. The definition of analytic complexity of an analytic function of two variables
is given. It is proved that the class of functions of a chosen complexity is a differential-
algebraic set. A differential polynomial defining the functions of first class is constructed.
An algorithm for obtaining relations defining an arbitrary class is described. Examples of
functions are given whose order of complexity is equal to zero, one, two, and infinity. It is
shown that the formal order of complexity of the Cardano and Ferrari formulas is significantly
higher than their analytic complexity. The complexity classes turn out to be invariant with
respect to a certain infinite-dimensional transformation pseudogroup. In this connection, we
describe the orbits of the action of this pseudogroup in the jets of orders one, two, and three.
The notion of complexity order is extended to plane (or “planar”) 3-webs. It is discovered
that webs of complexity order one are the hexagonal webs. Some problems are posed.
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The main hero of this story is the differential polynomial of differential order three and algebraic
degree four,

∆1(z) = z′xz
′

y(z′′′xxyz
′′

y − z′′′xyyz
′

x) + z′′xy((z′x)2z′′yy − (z′y)2z′′xx), (1)

which is treated in what follows from three points of view.

1. HIERARCHY OF CLASSES

Using an arbitrarily rich family of functions of a single variable only, one cannot obtain any
function of two variables as their superposition. We need at least one function of two variables.
Admittedly, the simplest function of this kind is the function x+ y. The family of functions of two
variables x and y which can be obtained in this way can be described as the hierarchy of classes
defined by induction,

Cl0 ⊂ Cl1 ⊂ Cl2 ⊂ Cln ⊂ · · · ⊂ Cl,

where Cl0 is formed by the functions of a single variable (x or y), Cl1 is formed by the functions
c(a(x) + b(y)), and Cln+1 consists of the functions of the form C(An(x, y) + Bn(x, y)), where C
is the family of functions of a single variable and An and Bn are functions in Cln. The symbol
Cl stands for the union of all classes with finite indices. Let us now make two refining remarks.
First: we deal with analytic functions only. Second: we understand the representability in the form
of superposition as a local representability in a neighborhood of a generic point. For instance, the
function tan(

√
x+log y) should be regarded as a first-class function, despite all specifications related

both to the domain of definition and to multivaluedness.
The zero class can be given by the following relation

Cl0 = {z : ∆0(z) = z′xz
′

y = 0}.

One can obtain a similar criterion for the germ of a function to locally belong to the first class.
Indeed, if z = c(a(x)+b(y)), then z′x = c′a′, z′y = c′b′, and hence z′y/z

′

x = b′(y)/a′(x), which implies
that the derivative of log(z′y/z

′

x) with respect to xy vanishes

δ1(z) = (log(z′y/z
′

x))′′xy = 0. (2)
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Computing the numerator of this rational expression, we obtain

∆1(z) = z′xz
′

y(z′′′xxyz
′′

y − z′′′xyyz
′

x) + z′′xy((z′x)2z′′yy − (z′y)2z′′xx) = 0. (3)

Conversely, any solution of (2) or (3) is a germ of a first-class function. Indeed, it follows from (2)
that log(z′y/z

′

x) = log(B(y)/A(x)). Moreover, if we assume that z(x, y) does not belong to Cl0, then

A(x) and B(y) are nonzero. Let us now rectify the vector field A(x) ∂
∂x

by a change of the variable x

and the vector field B(y) ∂
∂y by a change of the variable y. In this case, in the new variables (X,Y ),

we have z′X = z′Y , and therefore z = c(X + Y ) and, finally, z = c(a(x) + b(y)). Thus, taking into
account the above discussion and the uniqueness theorem for analytic functions, we obtain

Proposition 1. The following conditions are equivalent.

(1) Some germ of an analytic function z(x, y) is a first-class germ.

(2) All germs of the analytic function z(x, y) are first-class germs.

(3) ∆1(z) = 0 for some germ of the analytic function z.

(4) ∆1(z) = 0 for all germs of the analytic function z.

The fact that there is a differential-algebraic criterion for a function to belong to an arbitrarily
given class can be explained as follows. Let U (k) be the space of k-jets of functions of two variables,
i.e., the space of families of the form (x, y, z, z′x, z

′

y, . . . derivatives of order not exceeding k). As k
increases, the number of derivatives increases quadratically, and the number of derivatives of the
functions of a single variable entering the general expression for any function of the kth class
increases linearly. The expression for the derivatives of the function z in terms of the functions of
a single variable is polynomial. This means that, beginning with some k, the class is an algebraic
subset of U (k). If pr(k) denotes the extension mapping for a function, i.e., the mapping that assigns
to any function its image in U (k), then we can assert the following.

Proposition 2. The set pr(k)(Cln) is an algebraic subset of U (k) which is proper, beginning
with some K(n).

Thus, every class has a family of differential-polynomial relations defining it. Denote these rela-
tions by ∆n(z) = 0. With regard to the uniqueness theorem, we obtain the following corollary.

Corollary 3. If at least one germ of an analytic functions belongs to Cln, then so do the other
germs.

Since every class contains all classes with lesser indices, it follows that the polynomials ∆n(z)
belong to the differential ideal generated by the polynomials ∆m(z) for m < n and by the relation
∆n(z) = 0 are differential-algebraic consequences of the relations ∆m(z) = 0.

Definition 4. An analytic function z(x, y) is said to have complexity order n if z is contained
in Cln \Cln−1. If a function is not contained in Cl, we say that the complexity order of f is equal
to infinity.

In terms of relations defining the class, it is very simple to find the complexity order of a function.

Proposition 5. The complexity order of a function z(x, y) is equal to n if and only if ∆n(z) = 0
and ∆n−1(z) 6= 0.

Let us now return to the very beginning and ask: What changes if one replaces the base function
x+y by another analytic function φ(x, y)? Denote the hierarchy generated by a function φ(x, y) by

Cl0(φ) ⊂ Cl1(φ) ⊂ Cl2(φ) ⊂ Cln(φ) ⊂ · · · ⊂ Cl(φ).

One can formulate the following quite obvious assertion.

Proposition 6. Let there be two hierarchies, Cl(φ) and Cl(ψ). In this case, if φ ∈ Cl1(ψ), then
the inclusion Cln(φ) ⊂ Cln(ψ) holds for any n.
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Corollary 7. If φ ∈ Cl1(ψ) and ψ ∈ Cl1(φ), then Cln(φ) = Cln(ψ) (the classes coincide) for
any n.

In particular, the hierarchies generated by distinct arithmetic operations coincide due to the
relations xy = exp(log(x) + log(y)) and x+ y = log(exp(x) exp(y)).

Consider several examples.

(1) The complexity order of the polynomial x2 + y2 is obviously equal to one and that of the
polynomial x2 + xy is equal to two. Indeed, ∆1(x

2 + xy) = 2, i.e., the complexity exceeds one, and
it is immediate that the complexity does not exceed two.

Question 8. For polynomials, along with analytic complexity, one can consider polynomial
complexity. This means that one can construct a similar hierarchy by using polynomials in one
variable. Is it true that the corresponding classes are the same? Let us pose a very specific question.
Let a polynomial z(x, y) have analytic complexity of order one. Does there exist a representation
z = c(a(x) + b(y)), where (a, b, c) are polynomials?

(2) A. Ostrowski [1] showed that the generalized Riemann ζ-function

ζ(x, y) =

∞
∑

n=1

xn

ny

cannot satisfy any polynomial-differential relation, and therefore its analytic complexity is infinite.
If we equip the space of analytic functions with some reasonable topology, then the standard

argument shows that Cl is a rather meager subset (of the first Baire category, i.e., the countable
union of nowhere dense subsets). However, the existential status of this great set of quite obscure
functions is doubtful. There is a point of view claiming that these functions do not exist at all. On
the other hand, polynomials, rational functions, and all elementary functions (one can add special
functions of one variable to the generators) clearly belong to Cl.

(3) Let the function z be given by the relation zm + xz + y = 0. If m = 1, then its order of
complexity is equal to one. Let us show that its complexity order is equal to two for all degrees
m > 2. Indeed, differentiating the defining relation, we see that z = z′x/z

′

y, and thus the condition
δ1(z) = 0 becomes (log(z))′′xy = 0. Therefore, (log(z))′′xy = (z′x/z)

′

y = z′′yy and z = P (x) + Q(x)y,
i.e., for any x, the function z is linear in y. This is possible for m = 1 only. Thus, if m > 2, then the

complexity order is not less than two. On the other hand, after the change Z = z/y
1

m , t = xy
1

m−1 ,
the equation becomes Zm + tZ + 1 = 0, and its solution is an algebraic function of one variable,

Z(t). As a result, we obtain a representation of the original function in the form z = y
1

mZ(xy
1

m−1 ).

Since both the functions y
1

m and Z(xy
1

m−1 ) belong to the first class, their product belongs to the
second one.

The result thus obtained somewhat contradicts the formal complexity of the known formulas for
the roots of equations. Everything is good for the quadratic equation. Namely, the formula

z =
1

2

(

−x+
√

x2 − 4y
)

has formal complexity order equal to two. However, for m = 3, we have

z =
1

6

(

−108x+ 12
√

12x3 + 81y2
)1/3

− 2x
(

−108x + 12
√

12x3 + 81y2
)−1/3

,

and, as one can readily see, this formula has formal complexity order two. For m = 4 (I omit the
formula), the formal complexity order is equal to eight (!). Certainly, there is no logical contra-
diction. The point is that Cardano’s and Ferrari’s formulas solve different problems and, from our
point of view concerning complexity, the formulas are quite uneconomical.

How can one evaluate differential polynomials ∆n defining the higher classes Cln? This problem
has a well-known analog. Let a curve z1 = f(t), z2 = g(t) be given parametrically. How can one pass
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from the parametric equations to the equation on z1 and z2? One must eliminate the parameter t.
If, moreover, f and g are polynomials, then one can use the modern version of the elimination
theory. To this end, one must consider the ideal (in the polynomial ring in (z1, z2, t)) generated by
the relations

z1 − f(t) = 0, z2 − g(t) = 0,

introduce an order on the variables in such a way that t turns out to be the leading variable,
extend this order to the monomials, and evaluate (by the Buchberger algorithm) the standard
basis (the Gröbner basis) of the ideal. In this case, in accordance with the general theory [3],
the list of elements of the basis begins with a polynomial which does not contain t. The curve is
the zero set of the polynomial. Our situation is completely similar to that described above. The
relation

z = C(An−1(x, y) +Bn−1(x, y))

is a parametric representation of an arbitrary function in Cln, and it is determined by some family
of functions of one variable, t = (a1, b1, c1, . . . ). Let us regard this relation as the generator of the
differential ideal in the differential ring in which the formal variables are the function z together
with all its derivatives and the functions in the family t together with all of their derivatives.
One must introduce an order on the variables of the ring in such a way that the function z and
its derivatives are lower than t and the corresponding derivatives and then extend this order to
the differential monomials. The Kolchin–Ritt algorithm constructs a differential Gröbner basis [3].
According to the theory, the list of elements of the basis begins with a polynomial containing no
parameters. These are the desired expressions ∆n.

Unfortunately, the complexity of this algorithm is so high that it is unclear whether or not this
algorithm can be realized practically, at least to evaluate ∆2.

2. SYMMETRIES AND INVARIANTS

The hierarchy of classes constructed above admits an obvious symmetry. Namely, if P (x), Q(y),
and R(z) are locally invertible analytic changes of the corresponding single variable, if z(x, y)∈Cln,
and if the expression R(z(P (x), Q(y))) defines a function, then this function belongs to the same
class Cln. These changes of variables form a pseudogroup [4], which we denote by G. Since G acts
by smooth changes, the action has a natural extension to the space of jets. One can regard the
coordinates of the space of ℓ-jets as coordinates in a finite-dimensional space. The dimension of
this space is

D(ℓ) = 2 + (1 + 2 + · · · + (ℓ+ 1)) = 2 +
(ℓ+ 1)(ℓ + 2)

2
,

the expressions for the derivatives whose order does not exceed ℓ are polynomials that depend on the
derivatives of the change whose orders also do not exceed ℓ, and the number of the derivatives is
d(ℓ) = 3(ℓ + 1). From this point of view, our changes form a local Lie group (of dimension d(ℓ))
acting on the linear space of dimension D(ℓ). Here is the beginning of the list of dimensions:

D(0) = 3, D(1) = 5, D(2) = 8, D(3) = 12, D(4) = 17, . . .

d(0) = 3, d(1) = 6, d(2) = 9, d(3) = 12, d(4) = 15, . . .
(4)

If a vector field

v = p(x)
∂

∂x
+ q(y)

∂

∂y
+ r(z)

∂

∂z

generates a local one-parameter group of analytic transformations in the space of 0-jets, then
the extension of this action to jets of higher order also define one-parameter groups with the
corresponding generators pr(ℓ))v. These generators have the following form (see [1]):

pr(1)v = v +
(

r′(z) − p′(x)
)

z′x
∂

∂z′x
+

(

r′(z) − q′(y)
)

z′y
∂

∂z′y
,

pr(2)v = pr(1)v +
(

r′′(z′x)2 + r′zxx − p′′zx − 2p′z′′xx

) ∂

∂z′′xx

+
(

r′′z′xz
′

y + r′z′′xy − p′z′′xy − q′z′′xy

) ∂

∂z′′xy

+
(

r′′(z′y)2 + r′zyy − q′′zy − 2q′z′′yy

) ∂

∂z′′yy

,
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pr(3)v=pr(2)v+
(

(p′′′z′x + 3p′′z′′xx + 3p′z′′′xxx) + (r′′′(z′x)3 + 3r′′z′xz
′′

xx + r′z′′′xxx)
) ∂

∂z′′′xxx

(5)

+
(

(p′′z′′xy + 2p′z′′′xxy) + (q′z′′′xxy) + (r′′′(z′x)2zy + r′′(2z′xz
′′

xy + zxxzy) + r′z′′′xxy)
) ∂

∂z′′′xxy

+
(

(q′′z′′xy + 2q′z′′′xyy) + (p′z′′′xyy) + (r′′′(z′y)2zx + r′′(2z′yz
′′

xy + zyyzx) + r′z′′′xyy)
) ∂

∂z′′′xyy

+
(

(q′′′z′y + 3q′′z′′yy + 3q′z′′′yyy) + (r′′′(z′y)3 + 3r′′z′yz
′′

yy + r′z′′′yyy)
) ∂

∂z′′′yyy

,

and so on. Let us choose an order ℓ of the jet. The quantities

(p, p′, . . . , p(ℓ), q, q′, . . . , q(ℓ), r, r′, . . . , r(ℓ))

can be regarded as independent parameters. To each of these parameters, there corresponds an
infinitesimal generator of the local Lie group. The dimension of the orbit is the rank of the corre-
sponding matrix. For ℓ = 1, this matrix looks as follows:













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 z′x 0
0 0 0 0 z′y
0 0 0 zx zy













. (6)

The matrix is of size 6×5, which corresponds to the fact that the local group of dimension 6 (with the
parameters (p, p′, q, q′, r, r′)) acts on the space of dimension 5 (with the parameters (x, y, z, zx, zy)).
This matrix has a block structure; one can single out the identity 3×3 matrix as a direct summand.
This corresponds to the fact that an explicit dependence on (p, q, r) occurs for the 0-jet only. Thus,
a similar direct summand must also occur in the matrices constructed for arbitrary ℓ. In particular,
this implies the following assertion.

Proposition 9. Any invariant of the extended action does not depend explicitly on (x, y, z).

Thus, the truncated local group (with the parameters (p′, . . . , p(ℓ), q′, . . . , q(ℓ), r′, . . . , r(ℓ))) acting
on the space of truncated jets (i.e., without (x, y, z)) is of special interest. To this group, there
corresponds a truncated matrix which contains all the information on the rank of the system of
generators. For ℓ = 1, this is a 3 × 2 matrix whose rank is equal to 2 outside {zxzy = 0} = Cl0
and does not exceed one on Cl0. The orbit of a generic point is open, and therefore there are no
invariants. Cl0 is a singular orbit.

Let now ℓ = 2. The truncated matrix is of the form

















z′x 0 2z′′xx z′′xy 0
0 z′y 0 z′′xy 2z′′yy

z′x z′y z′′xx z′′xy z′′yy

0 0 z′x 0 0
0 0 0 0 z′y
0 0 (z′x)2 z′xz

′

y (z′y)2

















. (7)

The rank of this matrix is maximal and equal to 5 outside the same zero class {zxzy = 0} and does
not exceed two on Cl0. The orbit of the generic point is open, and there are no invariants.
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The next step is ℓ = 3, the size of the truncated matrix is 9 × 9,































z′x 0 2z′′xx z′′xy 0 3z′x 2z′′′xxy z′′′xyy 0
0 z′y 0 z′′xy 2z′′yy 0 z′′′xxy 2z′′′xyy 3z′′′yyy

z′x z′y z′′xx z′′xy z′′yy z′′′xxx z′′′xxy z′′′xyy z′′′yyy

0 0 z′x 0 0 3z′′xx z′′xy z′′′xxy 0
0 0 0 0 z′y 0 0 z′′xy 3z′′yy

0 0 z′x
2

z′xz
′

y z′y
2

3z′xz
′′

yy 2z′xz
′′

xy + z′yz
′′

xx 2z′yz
′′

xy + z′xz
′′

yy 3z′yz
′′

xx

0 0 0 0 0 z′x 0 0 0
0 0 0 0 0 0 0 0 z′y
0 0 0 0 0 z′x

3
z′x

2
z′y z′xz

′

y
2

z′y
3































, (8)

and the determinant is equal to 2(z′x)4(z′y)4∆1(z). This is exactly the second way of looking at
the polynomial (1). This polynomial defines a singular orbit in the 3-jet. Thus, the orbit of the
generic point is open, and there are no invariants. The two singular orbits are Cl0 and Cl1. Let
us use the notation of the book [5]: any point located above another stands for an orbit whose
closure contains the orbit represented by the lower point. Then the action described above gives
the following picture of abutting for the orbits:

s generic orbit

s Cl1









J
J

JJ

s {z′
y

= 0}









s{z′
x

= 0}

sJ
J

JJ

{z = const}

To the fact that Cl0 is partitioned into two orbits, there corresponds the fact that ∆0(z) can
be factorized into two irreducible factors, whereas ∆1(z) is irreducible. Let ℓ(n) be the differential
order of ∆n(z). If the other classes are irreducible, then one can assume that the general picture of
abutting for the orbits of the action on the ℓ(n)-jet is a linear graph (excluding the lowest segment)
whose vertices are all classes up to Cln plus the orbit of the generic point.

3. WEBS

Webs were introduced in mathematical usage by W. Blaschke [6]. A 3-web on the plane or on a
domain in the plane is defined by three families of smooth planar curves

{u1(x, y) = const, u2(x, y) = const, u3(x, y) = const}

such that the Jacobian of any pair of functions vanishes nowhere. Two webs obtained from each
other by a smooth change of coordinates on the plane are regarded as equivalent ones. Since we
have no other webs here, by a web we mean a planar analytic 3-web in what follows. Analyticity
here means the analyticity of the functions, curves, and changes of variables. Every web can be
represented locally in the form

{x = const, y = const, z(x, y) = const, where z /∈ Cl0}. (9)

In Blaschke’s book cited above, the differential-geometric theory of webs was developed. To a
web, one can assign the traditional family of objects: differential forms, connection, curvature, etc.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 14 No. 3 2007



ANALYTIC COMPLEXITY OF FUNCTIONS OF TWO VARIABLES 249

The curvature form of a web is a 2-form on the plane, Ω = k(x, y)dx∧dy, which is determined by a
single scalar coefficient, the so-called curvature, k(x, y). The curvature form has geometric definition
and, if two webs are equivalent by some change of variables, then the same change connects the
curvature forms. For webs represented in the form (9), the equivalence is the action of the above
pseudogroup G.

The following remarkable coincidence occurs. For any web represented in the form (9), the
curvature is k = δ1(z) ([6, Chap. 1, Sec. 9]). Therefore, the following assertion holds.

Proposition 10. A function z(x, y) has complexity order one if and only if the web of the form
(9) corresponding to this function has zero curvature.

A web whose curvature is identically zero has a local representation in the form of three families
of parallel lines. A web of this kind is said to be hexagonal. Our definition of the complexity order
for functions can be extended to webs.

Definition 11. A web is said to have complexity order n if n is the complexity order of the
function z in the representation (9).

The definition is correct, i.e., equivalent webs have the same complexity order, because the action
of the pseudogroup G does not modify the complexity order of the defining function. We can now
state the following corollary.

Corollary 12. A web has complexity order one if and only if it is a hexagonal web.

Question 13. What geometric property characterizes webs of complexity order two?

This question is meaningful even for linear webs, i.e., webs formed by three families of straight
lines. The dependence of the solution of an algebraic equation on two coefficients of the equation
gives interesting examples of linear webs. For instance, let z(x, y) be a solution of the equation
zm + xz + y = 0. In this case, the level curves are straight lines, and we obtain a linear web. As
was shown above, the complexity order is equal to two for m > 2.

Question 14.

(A) What is the complexity order of the linear web given by the equation zm +xz2 +yz+1 = 0?

(B) The rational functions and the webs defined by these functions have finite complexity order.
Does there exist an algebraic function (an algebraic web) of infinite complexity order?
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