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Abstract. In the paper it is proved that a “generic” CR-structure is reduced to an {e}-
structure. Using the invariant frames obtained as a result of this reduction (an analog of the
Darboux frame of classical differential geometry), we give a simple proof of an analog of the
Vitushkin theorem of the extension of a germ for a rather broad class of real submanifolds
of complex spaces.
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Greats teach us that the key to understanding an object is in the knowledge of its singularities,
“singular points.” If we study a class of objects rather than an individual object, then singularities
of this kind are some special and rare objects that have unique properties in the given class. The
knowledge of these singular objects gives a correct point of view at a generic object of the class. For
instance, an “arbitrary” germ of a three-dimensional real hypersurface in C2 has no holomorphic
symmetries at all, the È. Cartan homogeneous surfaces have a three-dimensional symmetry group
(they form a one-parameter family), and only the sphere has a larger group, namely, an eight-
dimensional one. Let us choose the sphere as the model and assume that every surface “wants to
look like” the sphere. Here it is convenient to write out the sphere in the noncompact representation
Imw = |z|2 (a point had sent to a point at infinity by a projective transformation); in this case, an
“arbitrary” surface is a perturbation of the sphere,

Im w = |z|2 + ε(z, z̄, Re w).

An intension to choose local holomorphic coordinates in such a way that the equation of the surface
becomes maximally similar (in some reasonable sense) to the equation of the sphere leads us to
normal coordinates and to an equation in the normal form,

Imw = |z|2 + n(z, z̄, Re w).

The choice of normal coordinates is unique up to an origin-preserving automorphism of the surface
(the stabilizer of any point on the sphere is five=dimensional). This ambiguity is unavoidable if the
class contains an object with such a high symmetry. If we delete the symmetric objects from the
class, then the choice of a normalization can become unique. This can be done as follows. Let us
use the normalization suggested in [2]; in this case, the lower terms of a normal equation acquire
the form

Im w = |z|2 + 2 Re(c42(Re w)z4z̄2 + c52(Re w)z5z̄3 + c43(Re w)z4z̄3) + . . .

If we impose the condition c42(0) 6= 0 (in this case, the surface is said to be nonumbilic at the
origin), then the stabilizer of a point contains at most two transformations, and if we additionally
impose the condition

c42(0)c̄52(0) + 3c43(0)c̄42(0) 6= 0

(i.e., the surface is strongly nonumbilic), then the stabilizer becomes trivial [7], and the normal
form can be refined in such a way that this form becomes unique (the so-called special normal
form). These two conditions define two dense open subsets in a real-analytic hypersurface that are
complements to proper analytic subsets provided that our surface is not the sphere. In terms of
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G-structure [3], our procedure can be described as follows. Originally, a nondegenerate hypersurface
in C2 was an H-structure, where H is the five-dimensional stabilizer of a point on the sphere [2].
On the set of nonumbilic points (our first condition) this H-structure is reduced to a Z2-structure,
and on the set of strongly nonumbilic points to an {e}-structure, i.e., this is an invariant frame
in the tangent bundle (absolute parallelism).One can readily construct such a frame on a strongly
nonumbilic surface. Indeed, write

θ1(ξ) =
∂

∂x
, θ2(ξ) =

∂

∂y
, θ3(ξ) =

∂

∂u
,

where (z = x+ iy, w = u+ iv) are the coordinates at the point ξ that coincide with unique special
formal normal coordinates at this point up to the 7th weight order. The dependence on the point is
determined by the class of the hypersurface, namely, it is analytic if the hypersurface is and smooth
if the hypersurface is. If there are two hypersurfaces of this kind, say, Γ and Γ̃, and if there is a
biholomorphic mapping of the first hypersurface onto the other one, then the differential of this
mapping takes the frame of the first hypersurface (θ1, θ2, θ3) to the frame of the other hypersurface
(θ̃1, θ̃2, θ̃3).

This frame can be completed with the field

ν(ξ) =
∂

∂v
,

generating the normal bundle to our hypersurface. The quadruple of fields thus obtained is com-
pletely similar to the Darboux frame in the geometry of surfaces in the space R3.

Thus, let us sum up: every CR-structure on a strongly nonumbilic three-dimensional submanifold
of two-dimensional complex manifold is reduced to an e-structure. The singular object, which is
the sphere in the case under consideration, is characterized by rich symmetries, whereas a generic
object (an object in general position) is characterized by a rich system of invariants.

A three-dimensional real hypersurface in a two-dimensional complex manifold is a model and a
source of analogies for more multidimensional situations. The generating d-dimensional real sub-
manifold M of a complex space of dimension N is characterized by its type first of all. The type is
a pair (n,K), where n is the CR-dimension, i.e., the complex dimension of the complex tangent,
whereas K is the CR-codimension which is the real codimension in the enveloping space on one
hand and the codimension of the complex tangent in the real tangent space, on the other hand. It
is assumed that the type does not depend on the point and that the numbers n and K are positive.
Moreover, N = n + K and d = 2n + K. There is another parameter we need, this is `, the length
of the Levi–Tanaka algebra; this parameter is introduced as follows. This is the index of the distri-
bution at which an increasing chain of distributions of real subspaces is stabilized, where the chain
begins with the distribution D1 of complex tangents and every subsequent distribution is obtained
as the linear hull of the previous distribution and the brackets of the vector fields belonging to the
previous distribution. Moreover, one can assume that the space in the last distribution D` is the
entire tangent space (because the general case can be reduced to this special case).

Recently, in the paper [5], model manifolds that are “singular” for the class of a completely
nondegenerate real submanifold of arbitrary type (n,K) in the same sense in which the sphere
mentioned above is singular among the germs of the manifolds of type (1, 1). The complete non-
degeneracy condition has the following meaning: the brackets of the vector fields in the complex
tangent not only give the entire tangent but also give it at minimally many operations for the given
values of n and K. It is clear that, in this case, ` can be evaluated from the type and is not an
independent parameter. The minimal value of ` is two and, for a chosen n, the parameter ` loga-
rithmically slowly and unboundedly grows as K increases. In contrast to the type (1,1), a model
surface need not be unique. In the general case we have a finite-dimensional family of pairwise
inequivalent model surfaces which can be described as the quotient space of the space of polyno-
mials of special kind by the action of some linear group [8]. Here the entire collection of germs of
completely nondegenerate manifolds of the given type is partitioned into subtypes each of which
is subjected to its own model surface. This model surface (the tangent model surface) Q = Q(Mξ)
is related to the germ Mξ like a tangent paraboloid of classical differential geometry. The group of
holomorphic symmetries of the model surface is a Lie group, which is a subgroup of the group of
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birational transformations of the space. The Lie algebra of this Lie group is a Lie subalgebra of the
polynomial vector fields with a natural grading structure of the form

g = g−` + · · ·+ g−1 + g0 + g1 + · · ·+ gd = g− + g0 + g+.

Moreover, the subgroup G− corresponding to the Lie subalgebra g− acts on Q freely and fixed-
point-freely and can naturally be identifies with the model surface Q by itself. In this case, the
Lie algebra g− (which then becomes the tangent space) can be identifies with the Levi–Tanaka
algebra, where g−1 becomes a complex tangent and generates the entire subalgebra g−. The group
G0 corresponding to the Lie subalgebra g0 is a linear subgroup of the stabilizer (this subgroup
admits an explicit description) and is isomorphic to some subgroup of GL(n,C). The following
facts are known for the subgroup G+ corresponding to g+. If ` = 2, then d can take the values 0, 1,
and 2. For the overwhelming majority of types, to the germs in general position there correspond
model surfaces for which d = 0; however, the number two is admissible in all well-studied situations.
For ` > 3, no example with d > 0 is known. Recently, I. Kossovskii [4] proved that, if ` = 3, then
d always vanishes, i.e., the subgroup G+ is trivial. It seems probable that this holds for all ` with
` > 3. If this is the case, then the Lie algebra of automorphisms of any model surface with ` > 2 is
of the form

g = g−` + · · ·+ g−1 + g0 = g− + g0.

Since the dimension of g− is invariable and is equal to the dimension of the manifold, to d = 2n+K,
the only variable quantity (in the sense of dimension) can be the component g0 only. For some rare
types, the group G0 can coincide with the full linear group GL(n,C); however, for the overwhelming
majority of types and for the model surfaces corresponding to germs in general position, this group
is reduced to R∗. These model surfaces are said to be rigid, and a germ is referred to as a rigid
germ if its tangent model surface is. Our nearest objective is to show that the CR-structure of
a rigid germ (i.e., of almost every germ) can almost always be reduced to an {e}-structure (the
only exclusion is the model surface). To this end, we recall some constructions and results of the
paper [5].

A model surface of an arbitrary type (n,K) can be constructed as a result of some recurrence
process. This is a process of evaluation of some sequence of data. Here is the list of the corresponding
data with the index m: a direct decomposition of the space of polynomials with weight m into the
sum of the space of harmonic forms Hm and a complementary space (the space of normalized
polynomials of weight m, CHm), the dimension km of the space CHm, and the space Ckm with the
coordinates wm = um + ivm. Note that the weights are attributed to the variables thus arising as
follows:

[z] = [z̄] = 1, [um] = [wm] = m.

The process is terminated at the `th step. The condition for terminating the process is that the
codimension K occurs in the interval

k2 + · · ·+ k`−1 < K 6 k2 + · · ·+ k`

Here the surplus of the codimension, k = K − (k2 + · · ·+ k`−1), can vary in the interval from 1 to
k`. As the result, a model surface of type (n,K) is a surface Q in Cn⊕Ck2 ⊕· · ·⊕Ck`−1 ⊕Ck given
by the relations

v2 = Φ2(z, z̄),
· · ·

v`−1 = Φ`−1(z, z̄, u2, . . . , u`−2),

v` = Φ`(z, z̄, u2, . . . , u`−1),

(1)

or simply by the relation v = Φ(z, z̄, u). Here the coordinates Φj for j = 2, . . . , ` − 1 are related
to a real basis of the space CHj and the coordinates Φ` are linearly independent elements of CH`.
Every completely nondegenerate germ can be represented (by an invertible polynomial change of
variables) in the form

v2 = Φ2(z, z̄) + F23(z, z̄, u) + . . . ,

· · ·
v`−1 = Φ`−1(z, z̄, u2, . . . , u`−2) + F`−1,`(z, z̄, u) + . . . ,

v` = Φ`(z, z̄, u2, . . . , u`−1) + F`,`+1(z, z̄, u).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 14 No. 1 2007



4 V. K. BELOSHAPKA

Here Fp,q stands for the component of the weight q in the expansion of Fp, i.e., of the term on the
right-hand side of the equation for vp complementary to Φp. If we now denote by F (s) the column
with the list of entries (F2,s+2, F3,s+3, . . . , F`,s+`), then the equation of the germ can be represented
in the form

v = Φ(z, z̄, u) + F (1) + F (2) + . . . ,

which we call the standard form.
By definition, the Lie algebra autQ of the infinitesimal automorphisms of Q consists of the

vector fields with the coefficients holomorphic in a neighborhood of the origin of the form

2Re
(
A

∂

∂z
+ B2

∂

∂w2
+ · · ·+ B`

∂

∂w`

)

with the tangency condition

L(f, g) = (Re(iB + 2Φ′zA + Φ′uB)|w=u+iΦ = 0. (3)

The Lie algebra corresponding to the zero stabilizer, aut0 Q, is the Lie subalgebra aut0 Q consisting
of the fields vanishing at the origin. It turns out that equation (0.3) has polynomial solutions of
bounded weight. If one extends the weights introduced above to the vector fields on Cn+K by the
condition [ ∂

∂z ] = [ ∂
∂z̄ ] = −1 and [ ∂

∂wj
] = [ ∂

∂w̄j
] = −j, then the Lie algebra aut Q becomes a graded

Lie algebra. The following assertion holds: along with with every field, every algebra contains every
homogeneous graded component of the field. The rigidity of a surface means that the Lie algebra
aut0 Q = g0 is one-dimensional and is generated by the field

2Re(z
∂

∂z
+ 2w2

∂

∂w2
+ · · ·+ `w`

∂

∂w`
), (4)

i.e., the one-dimensional space generated by (0.4) is the intersection of the kernel of the operator L
with the subspace of fields vanishing at the origin. Let us treat L as a linear operator taking the
space V of families of n + K formal power series in (z, w) to the space F formed by families of K
formal power series in (z, z̄, u). Let us represent the space F as the direct sum Im V ⊕N of the
image of the operator L and a direct complement to the image. When choosing the completion,
we satisfy the following conditions. First, we carry out the choice in every weight component
separately, and, second, we assume that some monomials vanish. It is clear that the complement
thus chosen is invariant with respect to the one-parameter subgroup of transformations of the form
z 7→ tz, w2 7→ t2w2, . . . , w` 7→ t2w`, where t ∈ R∗; this subgroup is a stabilizer of a rigid model
surface.

After this, by using the standard arguments of [2], we obtain the following assertion.

Proposition 1. (1) Any equation of a completely nondegenerate germ whose tangent model
surface is rigid can be reduced to the normal form v = Φ(z, z̄, u) + N(z, z̄, u), where N ∈ N , by a
formal change of variables.

(2) This reduction (z 7→ f(z, w), w 7→ g(z, w)), is unique up to choice of a single real parameter
t = ∂f1

∂z1 (0, 0).
(3) If (z 7→ f(z, w), w 7→ g(z, w)) is a mapping of a normal form into another normal form,

then f(z, w) = tz and g(z, w) = (t2w2, . . . , t
`w`).

(4) The only normal form of an equation of a model surface is v = Φ(z, z̄, u).

Assume that a normal equation of a germ of a surface is

v2 = Φ2(z, z̄) + N23(z, z̄, u) + N24 + . . . ,

. . .

v`−1 = Φ`−1(z, z̄, u2, . . . , u`−2) + N`−1,`(z, z̄, u) + . . . ,

v` = Φ`(z, z̄, u2, . . . , u`−1) + N`,`+1(z, z̄, u) + . . . ,

(5)
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or, in other words,
v = Φ(z, z̄, u) + N (2) + N (3) + . . . .

If the germ is equivalent to a model surface, then this means that all components of the normal
equation vanish; by analogy with the type (1, 1), we refer to such a germ as a spherical germ. It is
clear that, if a germ of a completely nondegenerate real-analytic surface at some point of this surface
turned out to be spherical, then it is spherical at all other points as well. If this is not the case and
if m is the index of the first nonzero component N (m), then we say that the germ is aspherical and
that m is the asphericity order at the given point. Obviously, the entire one-parameter family of
normal equations of a germ has the same asphericity order, i.e., this is an invariant characteristic.
One can make the following remark concerning the dependence of the components N (j) on the
equations of the original germ.

Remark 2. (1) The weight j-jet of a normalized equation, {N (2), . . . , N (j)}, depends only on
the weight j-jet of the original equation {F (1), F (2), . . . , F (j)} and a real parameter t, where the
dependence on the jet is real-analytic and the dependence on the parameter t is polynomial.

(2) The change of variables of the form z 7→ tz, w 7→ (t2w2, . . . , t
`w`), replaces a normal

equation of the germ v = Φ(z, z̄, u) + N (2) + N (3) + . . . by the equation

v = Φ(z, z̄, u) + t2N (2) + t3N (3) + . . .

If a manifold is aspherical, then one can impose an additional condition at a point at which the
asphericity order does not exceed m. Denote by ‖N‖m the sum of absolute values of all coefficients
of all components of the m-jet {N (1), N (2), . . . , N (j)}, and now, using the remaining degree of
freedom, assume that the condition ‖N‖m = 1 is satisfied. We refer to this normal form as a
special normal form of order m. A special normal form is defined uniquely up to a transformation
(z 7→ tz, w2 7→ t2w2, . . . , w` 7→ t`w`), where t is either 1 or (−1). To get rid of the Z2-symmetry,
we must formulate a condition that excludes the germs for which the transform

(z 7→ −z, w2 7→ w2, w3 7→ −w3, . . . , w` 7→ (−1)`w`)

is an automorphism from our family of “generic” germs. The germs with this symmetry are the
germs whose equations contain only components N (j) with even indices j. These germs are said
to be even. We refer to the index m of the first nonzero odd component as the it oddity order.
For a germ which is not even, one can introduce an additional condition on the normal form.
Namely, we can assume that the argument of the coefficient at the least monomial (in the sense
of lexicographical order) of the least nonzero odd component be in the half-interval [0, π). This
condition removes the last ambiguity from the procedure constructing a normal form. In other
words, we have two special normal forms, one of which does not use the oddity whereas the other
does use. We introduce no special term, and the normal form in question will be always clear from
the context. Let us formulate the following obvious assertion.

Proposition 3. (1) Every aspherical germ which is not even can be reduced to a special normal
form of some order by a formal change of variables.

(2) This reduction is unique.
(3) If both the asphericity order and the oddity order of a germ do not exceed m, then the m-jet

of the equation of this germ in the special normal form of order m analytically depends on the m-jet
of the original equation of the germ.

If we have a real-analytic completely nondegenerate manifold M which is aspherical of order
m and has no even points (i.e., the manifold is not even at any point), then we can now choose
a holomorphically invariant frame of the tangent bundle. To this end, it suffices to write out the
germ Mξ at every point ξ ∈ M in the coordinates that coincide with the special normal coordinates
(z = x + iy, w = u + iv) up to the order m and consider the standard frame of the tangent space
at the center of the germ, i.e.,

E =
{ ∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn
,

∂

∂yn
,

∂

∂u1
, . . . ,

∂

∂uK

}
.
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One can add that the family

NE =
{ ∂

∂v1
, . . . ,

∂

∂vK

}

is a holomorphically invariant frame of the normal bundle. The dependence of the frames on the
point is analytic. Thus, the following assertion holds.

Theorem (on the reduction). (1) Let M be a real-analytic completely nondegenerate manifold,
let M be aspherical, and let M be not even at any point. In this case, there is a holomorphic
invariant frame of the tangent bundle on M analytically depending on the point and a similar
frame of the normal bundle. In particular, the CR-structure can be reduced to an {e}-structure on
any manifold of this kind.

(2) If the condition concerning the absence of even points is not imposed, then one can claim that
there is a two-sheeted covering over M whose fiber is the invariant pair of frames of the tangent
space.

As is well known, the fact that the tangent bundle is trivial is a certain condition concerning the
topological structure of the manifold.

Let us now apply the invariant frame constructed above to the extension problem for holomorphic
mappings, in the spirit of the Vitushkin theorem of [1]. Our point of view at this problem is as
follows. The experience shows that there are two sources of difficulties here. The first of them is
related to the desire to encircle both the singular manifolds with rich symmetry groups and generic
manifolds that have no symmetries at all by some unified approach. The other source is typical
for an analytic approach with the help of normal forms and coordinates, and the corresponding
problems are related to convergence of some formal series [2]. We exclude the first circle of problems
by considering “generic” manifolds only (however, the Z2-symmetry is admissible) and the other
by using the formal normal form only, without studying any convergence problems for this form.

Before formulating the main result, we give the following definition. A number ε > 0 is referred
to as the amount (or supply) of analyticity of a function or a mapping Φ at a point ξ if Φ has a
representation as the sum of a power series in a polydisk centered at ξ and of radius ε and does not
exceed 1/ε on the closed polydisk of radius ε/2. By the amount (or supply) of analyticity of a surface
M at a point ξ we mean the amount of analyticity of a function F such that M = {v−F (z, z̄, u) = 0}
in a neighborhood of a point ξ at which the differential of F vanishes. Our version of the theorem
on a germ is as follows.

Theorem (on a germ). Let M and M̃ be two rigid completely nondegenerate aspherical real-
analytic submanifolds of complex spaces X and X̃, respectively, let K and K̃ be compact subsets of
M and M̃ , respectively, let ξ and ξ̃ be points of K and K̃, respectively, and let ψ be the germ of
an invertible holomorphic mapping from Mξ to M̃ξ̃ that takes ξ to ξ̃. In this case, the amount of
analyticity of the mapping ψ is a positive quantity depending on the objects M , K, M̃ , and K̃ only.

Proof. The asphericity order of points on the compactum K is bounded by some quantity m
because otherwise there is a point at which the germ of the manifold (and thus the entire manifold
as well) is spherical. If the manifold M is aspherical of order m, then, since the quantity ‖N‖m(ξ) is
bounded on K above and below by positive constants, then the same holds for the absolute values
of the factor t which is used when transforming a normal form to a special normal form. Thus, the
amount of analyticity of the invariant pair of frames,

Θ+ = (Θ+
1 , . . . , Θ+

2n+K), Θ− = (Θ−1 , . . . , Θ−2n+K),

at an arbitrary point of K depends on M and K only. Symmetrically, one can claim the same
concerning the invariant pair of frames on K̃,

Θ̃+ = (Θ̃+
1 , . . . , Θ̃+

2n+K), Θ̃− = (Θ̃−1 , . . . , Θ̃−2n+K).

Let us construct a certain real-analytic mapping φ of the first germ to the other for each of
the four pairs of the form (Θ, Θ̃), where Θ is one of the two frames on the first manifold and Θ̃
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is one of the two frames on the other by proceeding as follows. Set ψ(ξ) = ξ̃. If x(t1) and x̃(t1)
are integral curves of the fields Θ1 and Θ̃1 passing at t1 = 0 through ξ and ξ̃, respectively, then
ψ(x(t1)) = x̃(t1). Further, let x(t1, t2) and x̃(t1, t2) be integral curves of the fields Θ2 and Θ̃2 such
that x(t1, 0) = x(t1) and x̃(t1, 0) = x̃(t1), respectively, then we set ψ(x(t1, t2)) = x̃(t1, t2). etc.
After the last (2n + K)th step we see that the mapping ψ is well defined on a full neighborhood
of the point ξ and invertibly takes this neighborhood onto a full neighborhood of the point ξ̃.
Here the amounts of analyticity of the direct and inverse mappings depend only on the amounts of
analyticity of the pairs of frames. We now note that, if the germs Mξ and M̃ξ̃ are holomorphically
equivalent, then on any set where is coincides with a holomorphic mapping it must coincide with
one of the four mappings constructed above. However, a real-analytic mapping holomorphic in a
small neighborhood is holomorphic wherever it is analytic. This completes the proof.

One can derive a lot of corollaries to this theorem, as in [6]. In all these corollaries one speaks
of a completely nondegenerate rigid aspherical real-analytic submanifolds of complex spaces and of
germs of holomorphic locally invertible mappings.

Corollaries. (1) If both the submanifolds M and M̃ are compact, then the amount of analyticity
of the germ of any mapping from Mξ into M̃ξ̃ is bounded below by a positive constant depending on
the pair of manifolds only.

(2) The group of global automorphisms of a compact submanifold M is compact Lie group (in
the natural topology of uniform convergence on compacta) of holomorphic transformations of M .

(3) If M̃ is compact then the mapping ψ can be extended along all paths on M .
(4) If M̃ is compact and M is simply connected, then ψ can be extended to a holomorphic locally

invertible mapping from M into M̃ .
(5) If both M and M̃ are compact and simply connected, then the mapping ψ can be extended to

a holomorphic equivalence between M and M̃ .

Every situation in which some of these conclusions fails shows that the above {e}-structure was
subjected to some degeneration. Under the asphericity assumption, the reason is clear, namely, the
cause is in the loss of complete nondegeneracy. This means that we deal with a singularity. The
singularities of our {e}-structure form a topic of a separate consideration.

If the tangent bundle of the variety is nontrivial, then singularities of this kind necessarily occur.
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