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Abstract—We study real analytic CR manifolds of CR dimension 1 and codimension 2 in the
three-dimensional complex space. We prove that the germ of a holomorphic mapping between
“nonspherical” manifolds can be extended along any path (this is an analog of Vitushkin’s
germ theorem). For a cubic model surface (“sphere”), we prove an analog of the Poincaré
theorem on the mappings of spheres into C2. We construct an example of a compact “spherical”
submanifold in a compact complex 3-space such that the germ of a mapping of the “sphere”
into this submanifold cannot be extended to a certain point of the “sphere.”
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1. INTRODUCTION

Any embedding of a d-dimensional real smooth manifold M in the complex N -space distinguishes
a subspace TCR

ξ M = TξM ∩ iTξM of the tangent space TξM at each point ξ of the manifold.
We assume that the embedding is generating, i.e., the complex hull of TξM coincides with the
tangent space of the ambient space C

N ; in particular, the CR dimension n = dimC TCR
ξ M does not

depend on ξ, and N = d − n. The number k = d − 2n = N − n is called the CR codimension;
it coincides with the codimension of TCR

ξ M in TξM and the embedding codimension. We refer
to the germs of CR dimension n and codimension k as germs of type (n, k). In this paper, we
study CR manifolds of type (1, 2), which were also considered in [4–6]. Such manifolds have the
remarkable property that, although the Levi form is degenerate in the traditional sense, the generic
manifolds can be treated as deformations of a model surface C ⊂ C

3
(z,w2,w3)

of the form {Im w2 =
|z|2, Im w3 = 2Re z2z̄} (see [4]). Instead of the nondegeneracy condition, which requires that the
sections of TCRM and their commutators generate the entire TM (which is impossible because the
CR dimension is small), we assume that the entire space TM can be obtained from the sections of
TCRM by adding commutators twice. Taking into account the fact that the CR dimension is 1 and
the codimension is 2, it is easy to understand that the number of iterations cannot be smaller than
two and the above requirement is a condition of general position. A real 4-manifold endowed with
a rank-2 distribution D ⊂ TM is called an Engel manifold [11] if the sections of D together with
their commutators of the first and second order generate the entire space TM . We refer to a CR
manifold of type (1, 2) with an Engel distribution D = TCRM as an Engel-type CR manifold.

For Engel-type CR manifolds, just as for nondegenerate hypersurfaces, one can construct analytic
normal forms and Cartan connections by analogy with the constructions of Chern–Moser [1] and
Tanaka [10] (see [5, 6]).
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Using the Chern–Moser normal form, Vitushkin [7] proved a theorem on the extension to a
generic neighborhood of all germs of biholomorphic mappings between two nonspherical strictly
pseudoconvex real analytic manifolds. The main result of this paper is an analog of Vitushkin’s
theorem for Engel-type manifolds. Its proof is based on the construction of a normal form suggested
in [5]; for completeness, we cite the necessary statements from [5, 6].

2. NORMAL FORM AND CARTAN CONNECTION

Let (z, w2 = u2 + iv2, w3 = u3 + iv3) be coordinates in the space C
3. We say that a polynomial

in the variables (z, z̄, w2, w̄2, w3, w̄3) is of weight m if it is multiplied by tm under the change of
variables

(z,w2, w3) �→ (tz, t2w2, t
3w3), (1)

where t ∈ R
∗. Such polynomials arise on the right-hand sides of the equations of manifolds of the

form
v2 = |z|2 + . . . , v3 = 2Re z|z|2 + . . . .

Since the change (1) acts on the left-hand side of such an equation as the multiplication by t2

and t3, respectively, it is convenient to consider the degree of homogeneity of the polynomial on the
right-hand side rather than its weight m; the degree of homogeneity is defined as m − 2 for the
polynomial on the right-hand side of the equation for v2 and as m − 3 for the polynomial on the
right-hand side of the equation for v3.

We define the amount of analyticity for a germ of an analytic function as the maximal positive
number ε such that the power series representing this germ converges in the polydisk of radius ε
and the absolute value of the sum of this series is bounded by the constant 1

ε on the polydisk of
radius ε

2 . Let Mξ be a germ of an analytic manifold; suppose that it is spherical of order at most m.
Theorem 1. Any completely nondegenerate germ of a four-dimensional real analytic manifold

in C
3 can be reduced by a holomorphic transformation to the normal form

v2 = |z|2 + N2(z, z̄, u2, u3), v3 = 2Re z2z̄ + N3(z, z̄, u2, u3),

where the power series N2 =
∑

k,� N2
k,�(u2, u3)zkz̄� satisfies the conditions

N2
k,0 = 0, k ≥ 0, N2

1,1 = 0, N2
2,1 = 0, N2

3,1|u3=0 = 0, Im N2
4,2|u3=0 = 0

and the power series N3 =
∑

k,� N3
k,�(u2, u3)zkz̄� satisfies the conditions

N3
k,0 = 0, k ≥ 0, N3

k,1 = 0, k ≥ 1, Im N3
4,2|u3=0 = 0.

Such a reduction is unique up to a transformation of the form (1), and the amount of analyticity
of both the normalizing transformation and the normalized surface is bounded below by a positive
constant that depends only on the amount of analyticity of the initial surface.

We say that an Engel-type germ Mξ is spherical if it is equivalent to the germ of the cubic C. The
sphericity order of a germ is defined as the number m > 0 such that (N2

m, N3
m) is the first nonzero

component of homogeneity m in the normal form of its equation. Thus, a germ is spherical if and
only if it is spherical of infinite order. The condition that the order of a germ of an analytic manifold
at a given point is not smaller than a certain number is an analytic condition that determines a
system of embedded analytic subsets of the initial manifold M . If the manifold is nonspherical,
then all these subsets are proper subsets of M .

We define the m-measure of nonsphericity of an embedded germ as the maximum number δ > 0
such that δ ≤ ‖JmN‖ ≤ 1

δ , where ‖JmN‖ is the norm of the m-jet of the normal form of the
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embedded germ, parameterized by the identity automorphism T (1, 0, 0, 0) and treated as a vector
of coefficients.

For nonspherical germs, we can employ the remaining degree of freedom in the choice of normal
coordinates and apply an additional reduction of the form (1) so as to obtain ‖JmN‖ = 1. Such a
normal form is said to be special.

Theorem 2. (a) If Mξ is a nonspherical germ in the normal form, then it can be reduced to
the special normal form described above by a mapping of the form (1).

(b) Two such reductions can differ only by a change of the form (±z,w2,±w3); i.e., two non-
spherical germs Mξ and M̃

ξ̃
are holomorphically equivalent if and only if their right-hand sides

in the special normal coordinates N and Ñ satisfy at least one of the following two relations:
N(z, z̄, u2, u3) = Ñ(z, z̄, u2, u3) or N(−z,−z̄, u2,−u3) = Ñ(z, z̄, u2, u3).

(c) If ε is the amount of analyticity of an initial germ Mξ (as in Theorem 1), which is of
spherical order at most m, and δ is its m-measure of nonsphericity, then the amount of analyticity
of the germ of the mapping that reduces Mξ to its mth-order special normal form depends only on
ε and δ.

In [6], we constructed a Cartan connection. Among the 17 components of the curvature of the
connection, we selected four components such that if these four components vanish identically, then
the other 13 components also vanish identically and the manifold is therefore equivalent to the
model surface C. It turns out that these four principal curvature components can be interpreted
geometrically in terms of the integrability of certain distributions of planes. If the equation of the
manifold has the normal form

Im w1 = |z|2 + A1 Re z2z̄3 + A2 Im z2z̄3 + . . . ,

Im w2 = Re z2z̄ + B1 Re z4z̄ + B2 Re z2z̄3 + B3 Im z2z̄3 + B4 Re z5z̄

+ B5 Im z5z̄ + B6 Re z4z̄2 + B7 Im z4z̄2 + B8|z|6 + . . . ,

where the dots stand for the terms of higher degree of homogeneity, then the principal curvature
components at the origin are calculated as

Rx
y2(0) = 2B1 − B2, Ry

y2(0) = −3B3,

Rx
x3(0) = 2B1 − 5B2, Ry

x3(0) = 4A1 + 5B4 − 2B6 − 6B8.

This gives rise to a natural analog of umbilicity, which is defined for real hypersurfaces: an
Engel-type manifold is said to be umbilic at the origin if

B1 = B2 = B3 = 0, 4A1 + 5B4 − 2B6 − 6B8 = 0.

Just as for hypersurfaces, the umbilicity in a neighborhood of the origin means that the manifold
is spherical.

3. AN ANALOG OF THE POINCARÉ THEOREM

In 1907, Poincaré [2] proved that the germ of an invertible holomorphic mapping of a sphere
in C

2 to another sphere in C
2 is a linear-fractional transformation, which can be extended to a

biholomorphic mapping between the balls bounded by these spheres. This theorem was generalized
in 1974 by Alexander [3], who proved it for spheres in C

N with N ≥ 2.
A sphere is a model surface of type (n, 1). For the real algebraic surface C = {Im w2 = |z|2,

Im w3 = 2Re z2z̄}, which is a model surface for manifolds of type (1, 2), an analog of the Poincaré
theorem is valid (see Theorem 3 below).
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The 5-dimensional Lie group AutC of quadratic triangular transformations of the form

z �→ λ(z + p),

w2 �→ λ2
(
w2 + 2ip̄z + (q2 + i|p|2)

)
,

w3 �→ λ3
(
w3 + 4(Re p)(w2 + q2) + 2i(2|p|2 + p̄2)z + 2ip̄z2 + (q3 + 2iRe p2p̄)

)
,

(2)

where λ ∈ R
∗, p ∈ C, q2 ∈ R, and q3 ∈ R, acts transitively on the surface C. The representation of

elements of the group by four-tuples of parameters (λ, p, q2, q3) corresponds to the decomposition
of the group into the semidirect product R

∗
� C � R

2. We denote the corresponding transforma-
tion by T (λ, p, q2, q3). The subgroup Aut0 C consisting of transformations T (1, p, q2, q3) acts on C
transitively without fixed points and can be identified with C by associating each transformation
T (1, p, q2, q3) with the point ξ = (p, q2 + i|p|2, q3 + 2iRe p2p̄) ∈ C.

Theorem 3. Let ξ1 and ξ2 be two points in C and φ be the germ of an invertible holomorphic
mapping from the germ Cξ1 to the germ Cξ2 . Then, φ can be extended to a quadratic triangular
isomorphism of C

3 that has the form (2) and belongs to the group AutC.

Proof. This theorem follows directly from the uniqueness of the reduction of C to the normal
form [5]. Indeed, since the group AutC is transitive, we may assume that ξ1 and ξ2 coincide
with the origin. Hence, φ is a reduction of C to the normal form and, by Corollary 5 from [5],
φ = T (λ, 0, 0, 0), which proves the theorem. �

4. AN ANALOG OF VITUSHKIN’S GERM THEOREM

In 1978, Pinchuk proved the following remarkable theorem, whose statement is very similar to
that of the Poincaré theorem. Let Γ1 and Γ2 be two compact strictly pseudoconvex real analytic
nonspherical hypersurfaces in C

N . Then, the germ of any invertible holomorphic mapping from Γ1

to Γ2 can be extended along all paths in Γ1. For simply connected hypersurfaces, this means that the
germ can be extended to a biholomorphic equivalence of the hypersurfaces and, accordingly, of the
domains bounded by them. Pinchuk’s proof employed global constructions (such as the Fefferman
metric) and essentially used the structure of C

N . Somewhat later, Vitushkin proved a local version
of this assertion by a delicate analysis of the power series that define the mapping. In this paper,
we formulate and prove a similar assertion for CR manifolds of type (1, 2).

According to Theorem 8 from [5], the amount of analyticity of the germ of a mapping that
reduces Mξ to the special normal form of order m depends only on the amount of analyticity of the
initial germ and its m-measure of nonsphericity.

Theorem 4. Let M1 and M2 be two nonspherical real analytic submanifolds of type (1, 2) in
three-dimensional complex manifolds X1 and X2, and let K1 and K2 be compact subsets of M1

and M2, respectively. Let ξ1 and ξ2 be points in K1 and K2, respectively, and φ be the germ of
an invertible holomorphic mapping from M1

ξ1
to M2

ξ2
. Then, the amount of analyticity of φ is a

positive quantity depending only on K1 and K2.

Proof. The order of sphericity of a connected real analytic manifold is either bounded on each
compact subset or infinite everywhere. In the case under consideration, the former possibility is
realized. Suppose that all orders are bounded by m. Then, to construct the special normal form
at any point, we can use the special normal form of order m. For the compact set K1, there exist
a positive constant ε1 that bounds the amount of analyticity of the manifold at all points of this
compact set and a positive constant δ1 that bounds the m-measure of nonsphericity at all points of
the compact set K1. These parameters also bound the amount of analyticity of the inverse mapping.
Let (ε2, δ2) be a similar pair of constants chosen for K2. The mapping φ is the composition of the
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reduction to the special normal form of order m and its inverse. Thus, the amount of analyticity of
the germ of φ is a positive constant depending on the set (ε1, δ1, ε2, δ2). The theorem is proved. �

This theorem has a number of immediate corollaries. All of them are related to four-dimensional
nonspherical real analytic submanifolds of complex 3-manifolds and to locally invertible holomorphic
mappings.

Corollary 5. (a) If both submanifolds M1 and M2 are compact, then the amount of analyticity
of the germ of any mapping from M1

ξ1
to M2

ξ2
is bounded below by a constant depending only on the

pair of manifolds.
(b) All mappings from a compact submanifold M1 to a compact submanifold M2 admit holo-

morphic extensions to a common neighborhood of M1.
(c) The global automorphism group of a compact submanifold M1 is a compact Lie group of

holomorphic transformations of M1 in the topology of uniform convergence.
Examples of compact submanifolds of type (1, 2) are given in Section 5. Corollary 5 establishes

a relationship between the local theory discussed in this paper and the global theory. Note that
(c) also implies that if the automorphism group is noncompact, then the manifold is spherical.
An analogous assertion is valid for compact strictly pseudoconvex hypersurfaces in C

n [7]: If the
automorphism group of such a surface is noncompact, then the surface is spherical. A similar result
was obtained in [9].

Corollary 6. Let φ be the germ of a holomorphic mapping from a submanifold M1 to a sub-
manifold M2.

(a) If M2 is compact, then φ can be extended along all paths in M1.
(b) If M2 is compact and M1 is simply connected, then φ can be extended to a holomorphic

locally invertible mapping from M1 to M2.
(c) If both M1 and M2 are compact and simply connected, then φ can be extended to a holo-

morphic equivalence between M1 and M2.
The proof of the germ theorem in the preceding section does not essentially differ from that

of Vitushkin’s theorem, but it is technically much simpler. The main reason for this is that the
automorphism group of the model surface C, which parameterizes the mappings of Engel-type CR
manifolds, is much more meager than the automorphism group of a hyperquadric, which parame-
terizes the mappings of nondegenerate hypersurfaces.

5. COMPACT REALIZATIONS OF THE CUBIC
AND AN EXAMPLE OF AN INEXTENDIBLE MAPPING

As mentioned above, the group AutC of holomorphic automorphisms of C consists of transfor-
mations of the form (2), which act on the ambient space C

3.
It is seen from (2) that if λ 	= ±1, then such a transformation has precisely one fixed point. Any

such transformation is conjugate in the group AutC to a transformation with fixed point at the
origin. Such a transformation is T (λ, 0, 0, 0). If λ = −1 and p = q2 = 0, then the fixed points in
the ambient space form the line (z = 0, w2, w3 = − q3

2 ), where w2 is an arbitrary complex number.
If w2 is real, these points belong to C. If λ = 1 or λ = −1 and p 	= 0 or q2 	= 0, then there are no
fixed points.

Now, consider the dimensions of the orbits of the action of the 5-dimensional real Lie group
AutC. The cubic C is a singular 4-dimensional orbit. A generic orbit is a 5-dimensional hyper-
surface. This can be shown as follows. Note that the action of AutC on C

3 commutes with the
projection onto C

2
(z,w2)

; therefore, the action of AutC on C
2 is well defined. As is known, this action

has three orbits: the hypersurface {Im w2 = |z|2} and the two domains on both sides of it. Each
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orbit of the action in C
3 must cover an orbit of the action in C

2; the orbits that cover domains are
at least 4-dimensional, but the presence of transformations of the form T (1, 0, 0, q3) in the group
under consideration allows us to assert that the orbits have the form of a direct product in which
one of the factors is the real line along w3. Therefore, the orbits are at least 5-dimensional, and the
dimension of the group prevents them from being more than 5-dimensional.

Example 1. Consider the subgroup H of Aut C generated by the four transformations
T (1, ω1, 0, 0), T (1, ω2, 0, 0), T (1, 0, q1

2 , q1
3), and T (1, 0, q2

2 , q2
3), where the complex numbers ω1 and ω2

are linearly independent over R and the vectors (q1
2 , q

1
3) and (q2

2, q
2
3) are independent as vectors

in R
2. This is a discrete subgroup of holomorphic transformations of C

3 with a completely dis-
continuous action. The homogeneous space given by the quotient of C

3 modulo H is a complex
manifold with the topological structure of (S1)4 ×R

2. After the factorization, the cubic C becomes
a compact spherical real 4-submanifold Ĉ with the topological structure of the 4-torus (S1)4. The
universal covering of Ĉ is, obviously, the cubic C itself, which has the topological type of R

4. Any
biholomorphic mapping between two such manifolds (with different sets of parameters) can be lifted
to an automorphism of the cubic. It is easy to show that such an automorphism ensures the linear
equivalence of the lattices. Thus, almost all of them are holomorphically inequivalent.

Example 2. As the second example, consider the quotients of C
3 \{0} and C \{0} modulo the

infinite cyclic subgroup generated by the transformation T (λ, 0, 0, 0), where λ > 1. The expression
τ = |z|6 + |w2|3 + |w3|2 is a conformal invariant of this group. The space C

3 \ {0} is foliated by
the level surfaces of the function τ , which are topologically equivalent to the 5-sphere S5. Since
T (λ, 0, 0, 0)(τ) = λ6τ , it follows that the “spherical layer” {1 ≤ τ < λ6} is a fundamental domain,
and we obtain a compact complex manifold of the topological type S5 × S1. The cubic C can be
regarded as the graph of a mapping from C×R

2 to R
2. The fundamental domain of the cubic after

factorization is the graph over the spherical layer of the form 1 ≤ |z|6 + |u2|3 + |u3|2 < λ6. Thus,
the factored cubic Ĉ has the topological type of S3 × S1, and its universal covering is a punctured
cubic, i.e., R

4 \ {0}. It is easy to see that the quotient manifolds corresponding to different values
of the parameter λ > 1 are holomorphically inequivalent.

A “counterexample” to the germ theorem similar to the example of Burns and Shnider [8] is very
simple. Consider the germ of the identity mapping at any point different from the origin, e.g., at
(0, 0, 1), as a mapping from C to Ĉ. The line joining this point with the origin is mapped to a cycle
on Ĉ that is traversed infinitely many times, which prevents the germ from being extended along
this path to the origin.

Burns and Shnider realized the quotient manifold as a compact surface in the initial complex
linear space, whereas the manifold which we consider here is embedded in the quotient of C

3 \ {0}
by the action of T (λ, 0, 0, 0).

Example 3. The last, third, example is the quotient of C\{(z = 0, Imw2 = 0, w3 = 0)} by the
group Z2 generated by the transformation T (−1, 0, 0, 0). As a result, we obtain the nonorientable
spherical submanifold C

3 \ {(z = 0, w2 ∈ C, w3 = 0)} factored by T (−1, 0, 0, 0).
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