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Real submanifolds in complex space: polynomial

models, automorphisms, and classification problems

V. K. Beloshapka

Abstract. This is a survey of results on the local theory of real submanifolds of
a complex space. Most of the results included here were obtained in Vitushkin’s
seminar at Moscow State University over the last fifteen years. The most important
achievement is a technique for computing automorphisms, invariants, and classifi-
cations of real submanifolds, which includes as a main step the construction of a
‘good’ model surface (an analogue of an osculating paraboloid in classical differential
geometry).
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§ 1. Introduction

Vitushkin’s 1985 survey [64] deals mainly with non-degenerate real hypersur-
faces. The present survey can be viewed as a continuation of that paper. Our main
subject is the results on local theory of real submanifolds obtained by participants
of Vitushkin’s seminar in the last ten to fifteen years, when manifolds of codimen-
sion greater than one have been intensively studied and an efficient technique has
been created for computing automorphisms, constructing invariants, and so on.
(We refer to this technique as the model-surface method.)

This topic is of interest not only in multidimensional complex analysis, but also
in differential geometry and partial differential equations. The geometric thread
includes the work of E. Cartan, Tanaka, Chern, and others (see [20], [58], [21],
and [42]). In modern terminology, this is the reduction technique for G-structures.
The main (although by no means the only) successful application of the method to
real submanifolds pertains to hypersurfaces. The approach has also been applied
to manifolds of codimension greater than one by Tanaka in his classical papers
as well as by Garrity–Mizner [33] and Ezhov–Isaev–Schmalz [25]. The analytic
thread is due to Tress, Poincaré, Riquier, Moser, Webster, Pinchuk, and others
(see [59], [47], [36], [21], [65], and [46]). Of contemporary authors contributing to
this direction, we mention Baouendi, Rothschild, Stanton, Ebenfelt, and Zaitsev
([5], [6], [54], [8], [9]) as well as Sukhov ([56], [57]). Our approach, which will be
discussed below, is also closely related to the analytical thread.

Almost all results presented in this survey have been obtained by a unified
method. A key point in applying the method is the construction of a ‘good model’.
(We shall assign an exact meaning to this term.) The main result is the model-
surface method itself rather than any of its specific applications.

A real submanifold of the complex space is an object arising naturally in
multidimensional complex analysis. Hypersurfaces, that is, submanifolds of real
codimension one, are the topological boundaries of domains. Submanifolds of
higher codimension arise as the skeletons of topological boundaries, or their Shilov
boundaries.

If a smooth real manifoldM is embedded in the complex space CN , then there is
an interplay between the smooth structure of the manifold and the complex struc-
ture of the ambient space. This interplay gives rise to local biholomorphic invari-
ants, the automorphism group of the manifold germ proves to be finite-dimensional
or even trivial, two germs chosen at random turn out to be non-equivalent, and
so on. The coarsest local invariants are related to the 1-jet of the germ. The first
indication of the interaction between the two above-mentioned structures is the
existence of a non-trivial complex part in the tangent space of the manifold. If
the real dimension of the manifold is sufficiently large (namely, is greater than the
complex dimension of the space), then the complex part is necessarily non-trivial.
The pair (n, k), where n is the dimension of the complex tangent (which may vary
from point to point) and k is the codimension, will be called the manifold type. It is
determined by the 1-jet of the manifold germ at a point and is a local biholomorphic
invariant. For example, it does not permit one to map the complex line onto the
two-dimensional real plane biholomorphically.
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We mainly pay attention to local properties of a real submanifold of the complex
space. Three interrelated issues—automorphisms, invariants, and classification—
are the focus of our attention.
We need the following notation. If M is a smooth surface in CN , ξ ∈ M , and

Mξ is the germ of M at ξ, then by autMξ we denote the Lie algebra of germs at ξ
of real vector fields tangent toMξ with holomorphic coefficients. If z = (z1, . . . , zN)
are coordinates in CN , then

autMξ =

{
X(z) = 2Re

(
f1(z)

∂

∂z1
+ · · ·+ fN (z)

∂

∂zN

)}
,

where the restriction ofX toMξ is a field germ tangent toMξ and (f1(z), . . . , fn(z))
are holomorphic function germs at ξ. This is the Lie algebra of infinitesimal holo-
morphic automorphisms. These vector fields generate a holomorphic action onMξ .
The corresponding local group AutMξ is the image of autMξ under the exponen-
tial map and acts on Mξ by transformations biholomorphic at ξ. In the following,
the algebra and the corresponding group are called the germ algebra and the germ
group, respectively.

§ 2. Demonstration of the method: a hypersurface in C2C2C2

The study of real submanifolds started from the case of codimension one (hyper-
surfaces). A relevant bibliography can be found in [64]. Here we only note that the
first paper concerning hypersurfaces was written in 1907 by Poincaré [47]. It deals
with the lowest-dimensional case of a three-dimensional hypersurface in C2.
A hypersurface in C2 is a surface of type (1, 1). Let use present the technique in

this simplest situation.

2.1. The choice of a model surface. A hypersurface Γ can be represented in
a neighbourhood of a point ξ ∈ Γ as the zero set of a smooth function ρ satisfying
grad ρ(ξ) �= 0. By an affine change of variables one can ensure that ξ = (0, 0)
and gradρ(ξ) = (0, i). Let (z, w = u+ iv) be coordinates in C2; then, solving the
equation ρ(z, z, u, v) = 0 for v, we obtain an equation for the hypersurface germ at
zero in the form Γ0 = {v = F (z, z, u)}, where the function F and its first derivatives
vanish at the origin. Furthermore, the z-plane {w = 0} is the complex tangent to
the hypersurface at zero, and the entire tangent plane is {v = 0}. If the surface is
real-analytic, then F is a convergent power series. If the surface is only smooth,
then we can consider the formal series. We introduce a gradation in the space of
series in the variables (z, z, u) by assigning the weights [z] = 1, [z] = 1, and [u] = 2.
Then the equation of the germ can be written as v = 2Re(Az2) +hzz+ · · · , where
the dots stand for terms of weight ≥ 3. This equation can be rewritten in the form
2 Im(w + 2iAz2) = hzz + · · · , or, after the simple quadratic-triangular coordinate
transformation z → z, w → w + 2iAz2, in the form

v = hzz + · · · . (1)

We note that the one-dimensional Hermitian form hzz is the Levi form of Γ0 at
zero. If it is non-degenerate (that is, h �= 0), then the change of variables z → z,
w→ hw gives

v = zz + · · · . (2)
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Our model surface is the quadratic hypersurface Q = {v = |z|2} (the tangent
quadric).
We have not restricted ourselves to 1-jets, since all hyperplanes have an infinite-

dimensional automorphism group. We deal only with the Hermitian term in the
2-jet, since all other terms can be eliminated by changing the variables and
dropping higher-weight components. We shall see that if one wishes to obtain
a finite-dimensional germ group, it indeed suffices to consider 2-jets.

2.2. Automorphisms of the model surface. We start by computing the alge-
bra autQ of infinitesimal automorphisms of Q. Writing out the tangency condition,
we arrive at the following description of this algebra:

autQ =

{
X(z, w) = 2Re

(
f(z, w)

∂

∂z
+ g(z, w)

∂

∂w

)}
,

where the functions f and g are holomorphic in a neighbourhood of the origin and
satisfy the functional equation

Im g(z, u+ i|z|2) = 2Re(f(z, u+ i|z|2)z ). (3)

There is an easy-to-use technique for solving this equation in the class of formal
power series. We use expansions of the form

f(z, u + i|z|2) =
∞∑
m=0

im

m!
∆mf(z, u),

where ∆f = |z|2 ∂
∂u
f (∆0 = Id), and also

f(z, u) =
∞∑
m=0

fm(u)z
m.

The original equation splits into relations of given bidegrees in (z, z). Thus we
obtain an infinite system of ordinary differential equations for the sequence
(f0(u), g0(u), f1(u), g1(u), . . . ) of unknown functions. However, writing out the
components of bidegrees (2, 0), (3, 0), . . ., we find that g2 = g3 = · · · = 0, while
the components of bidegrees (3, 1), (4, 1), . . . give f3 = f4 = · · · = 0. Then one
writes out the relations of bidegrees (0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3) for
the remaining five functions g0, g1, f0, f1, f2. The solutions of the resulting sys-
tem of ordinary linear differential equations are polynomials of relatively low order;
moreover, the equations so far unused impose no additional restrictions on the solu-
tion. As a result, we find that the algebra consists of vector fields with coefficients
of the form

f = p+ λz + aw + 2iaz2 + rzw, g = q + 2ipz + 2(Reλ)w + 2iazw + rw2,

where (p, λ, a) are complex parameters, (q, r) are real parameters, and dimautQ=8.
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We introduce a gradation in the algebra of vector fields by the conditions

[z]=1, [z]=1, [w]=2, [w]=2,

[
∂

∂z

]
=−1,

[
∂

∂z

]
=−1,

[
∂

∂w

]
=−2,

[
∂

∂w

]
=−2.

This gradation is consistent with the Lie bracket: if gm is the subspace of fields of
weight m, then [gm, gn] ⊆ gm+n. It follows from our computations that autQ has
the following structure:

autQ = g−2 + g−1 + g0 + g1 + g2,

where

g−2 =

{
2Re

(
q
∂

∂w

)}
,

g−1 =

{
2Re

(
p
∂

∂z
+ 2ipz

∂

∂w

)}
,

g0 =

{
2Re

(
λz
∂

∂z
+ 2(Reλ)w

∂

∂w

)}
,

g1 =

{
2Re

(
(aw + 2iaz2)

∂

∂z
+ 2iazw

∂

∂w

)}
,

g−2 =

{
2Re

(
rzw

∂

∂z
+ rw2

∂

∂w

)}
.

To construct one-parameter transformation groups corresponding to the alge-
bra of vector fields, one must solve the corresponding differential equations. If
(z, w) → (Z(t, z, w),W (t, z, w)) is the desired group corresponding to the field

2Re

(
f(z, w)

∂

∂z
+ g(z, w)

∂

∂w

)
, then the functions (Z,W ) satisfy the system of

ordinary differential equations and the initial conditions

Z′ = f(Z,W ), W ′ = g(Z,W ), Z(0, z, w) = z, W (0, z, w) = w.

By solving these equations for the fields in the five weight components, we find that

g−2 corresponds to z → z, w→ w + tq;
g−1 corresponds to z → z, w→ w + 2ipzt+ i|p|2t2;
g0 corresponds to z → z exp(λt), w→ w exp(2Re(λt));

g1 corresponds to z →
z + awt

1− 2iazt− i|a|2wt2 , w →
w

1− 2iazt − i|a|2wt2 ;

g2 corresponds to z →
z

1− rwt , w→
w

1− rwt.

Solving the systems corresponding to the weights −2, −1, 0, and 2 involves no diffi-
culties. These are equations with separated variables. The system corresponding to
the first component can be solved with the help of the change of variables Z = 1/Z̃,

W = W̃/Z̃.
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By setting t = 1 in the resulting expressions, we obtain the values of the expo-
nential map on vectors lying in the respective weight components of the algebra.
The subalgebra g− = g−2 + g−1 generates the subgroup

Aut−Q =
{
z → z + p, w → w + 2ipz + (q + i|p|2)

}
,

which acts transitively on Q. Thus, Q is affine homogeneous. The subalgebra g0
generates the subgroup

Aut0Q =
{
z → Λz, w→ |Λ|2w

}
of linear automorphisms preserving the origin. The subalgebra g+ = g1+ g2 gener-
ates the subgroup

Aut+Q =

{
z → z + awt

1− (2iaz + (r + i|a|2)w) , w →
w

1− (2iaz + (r + i|a|2)w)

}

of linear-fractional automorphisms of Q. This subgroup is singled out by the con-
dition that the origin is preserved and the Jacobian matrix of an automorphism at
the origin has unit diagonal entries (Λ = 1).

2.3. A bound for the dimension of the automorphism group of the germ.
The fact that the model surface Q plays a distinguished role in the class of non-
degenerate hypersurfaces is most convincingly illustrated by the estimate

dimAutΓξ � dimAutQ,

which holds for an arbitrary non-degenerate smooth hypersurface germ in C2. The
forthcoming argument is a version of the implicit function theorem for formal series
with an estimate of the number of parameters.
The implicit function theorem states that a non-linear equation has a unique

solution whenever its linear part does. In our case, the linear part of a non-linear
relation coincides with the already familiar equation determining the infinitesimal
automorphism algebra of Q.
Let us consider a somewhat more general situation. Suppose that a map of the

form
f = z + f2 + · · · , g = w + g3 + · · · (4)

takes a hypersurface germ

Imw = |z|2 + F (z, z,Rew) (5)

to a hypersurface germ

Imw = |z|2 + F̃ (z, z,Rew) (6)

of the same form, where the components F and F̃ are of weight ≥ 3. The fact
that (4) takes (5) to (6) can be represented in the form of the identity

Im(w+ g3+ · · · ) = |z+ f2 + · · · |2 + F̃ (z+ f2 + · · · , z+ f2 + · · · , u+Re g3 + · · · ),

where w = u+ i(|z|2 + F̃ (z, z,Rew)).
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By taking the component of weight (m+ 1) in this relation, we obtain

Re(igm+1 + 2fmz) = Fm+1 − F̃m+1 + · · · ,

where w = u+ i|z|2 on the left-hand side and the dots on the right-hand side stand
for terms depending on fj , gj+1, Fj+1, and F̃j+1 with j < m.

For given F and F̃ , these relations permit one to compute the polynomial com-
ponents (fm, gm+1) recursively by solving systems of linear algebraic equations
whose right-hand sides depend only on components computed earlier. The dimen-
sion of the solution set of a non-homogeneous system of linear equations does not
exceed the dimension of the solution set of the homogeneous system. But the homo-
geneous equations are just the equations (3), which determine the algebra autQ.
Hence the number of free parameters specifying a map in the class of formal power
series of the form (4) does not exceed the dimension of the subalgebra aut+Q,
which is equal to three in this case. (The parameters are a and r.) Thus, the
number of parameters specifying an arbitrary map of these germs does not exceed
the dimension of the entire algebra autQ, which is equal to eight. By applying this
estimate to a self-map of the germ, we obtain the desired bound for the dimension
of the germ automorphism group.
In fact, this computation goes beyond estimating the dimension. We have

obtained more, namely, we have indicated a system of parameters uniquely
determining a map of one non-degenerate germ into another. In particular, a
parametrization of automorphisms of an arbitrary germ has been obtained. Indeed,
consider the parameters (p, q,Λ, a, r) determining an automorphism of Q and form-
ing a part of the 2-jet of the automorphism. This system of parameters uniquely
determines a self-map of the germ; furthermore, the parameters may be related by
additional conditions (see [10]), which results in a dimension drop. This dimension
is zero in general position.

2.4. What is a good model? Let us list the main stages of the study carried
out in the preceding subsection.

1. The choice of a good model surface.
2. The computation of the algebra and the group for the model surface.
3. The parametrization of maps of germs by the germ algebra of the model
surface.

Let us state once more the properties of a good model surface Q.
1. Universality : an arbitrary non-degenerate hypersurface germ in C2 is equiv-

alent to a germ of the form (2).
2. Finite dimension: (a) the group of holomorphic automorphisms of Q is finite-

dimensional; (b) every hypersurface specified by equations of degree less than two
has an infinite-dimensional automorphism group.
3. Homogeneity : the hyperquadric Q is homogeneous; that is, its holomorphic

automorphisms act on Q transitively. In this case, the homogeneity is provided by
affine automorphisms.
4. Symmetry : (a) the hyperquadric is the most symmetric non-degenerate hyper-

surface in that the dimension of the germ group of a non-degenerate hypersurface
does not exceed the dimension of the germ group of the tangent hyperquadric;
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(b) the algebra of the model surface parametrizes the family of maps of one non-
degenerate germ into another.
5. Algebraic properties: (a) the Lie algebra of holomorphic vector fields on a non-

degenerate hyperquadric is an algebra of polynomial vector fields of bounded degree;
in our case, the degrees of the coefficients do not exceed two; (b) the automorphism
group of a non-degenerate hyperquadric is a Lie subgroup of the group of linear-
fractional transformations of C2.

In the following, we say that some surface is a good model surface for germs of
some given type if some version of the above-mentioned properties holds for this
surface.
There are also properties specific to surfaces of type (1, 1). Let us mention two

of these properties.
(1) The model surface is unique: the same quadric Q is a good model for an

arbitrary non-degenerate germ of type (1, 1).
(2) The model surface is the image of the standard sphere under a linear-

fractional transformation. Indeed, the change of variables

z̃ =
z

w − i , w̃ =
i(w + i)

w − i

takes Q = {Im w̃ = |z̃|2} to {|z|2 + |w|2 = 1}. The point (0, i) corresponds to the
intersection of Q with projective infinity.

§ 3. Hypersurfaces in CNCNCN

Non-degenerate hypersurfaces in spaces of arbitrary dimension have been studied
in a number of papers (see [58], [21], and [64]).
An argument similar to that carried out for C2 shows that the equation of a

smooth hypersurface germ in the space Cn+1 with coordinates (z = (z1, . . . , zn),
w = u+ iv) can be represented in the form

v = 〈z, z〉+ · · · , (7)

where 〈z, z〉 is a Hermitian form (the Levi form) and the dots stand for terms of
weight � 3. (The weights are defined by the same formulae [z] = 1, [z] = 1, and
[u] = 2.) In this case, the model surface is the hyperquadric Q = {v = 〈z, z〉}.
It will be called the tangent quadric to the hypersurface (7). The group AutQ
is finite-dimensional if and only if the Hermitian form 〈z, z〉 is non-degenerate. If
this is the case, then we also say that the hypersurface germ and the quadric are
non-degenerate. If the form is degenerate, then one of the variables, say zj , is
absent in the representation of the form as a sum of squares. Then an arbitrary
transformation of the form zj → f(zj ), where f ′(0) �= 0 (the other variables are
not affected) is an automorphism, and the group AutQ is infinite-dimensional. If
the form is non-degenerate, then Q is a good model surface, that is, the following
typical assertions hold.
1. Universality : an arbitrary hypersurface germ in Cn+1 is equivalent to a germ

of the form (7).
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2. Finite dimension: (a) the group of holomorphic automorphisms of a generic
hyperquadric is finite-dimensional; (b) the group of holomorphic automorphisms
of Q is finite-dimensional if and only if the form 〈z, z〉 is non-degenerate; (c) every
hypersurface specified by equations of degree less than two has an infinite-
dimensional automorphism group.
3. Homogeneity : the hyperquadric Q is homogeneous; that is, its holomorphic

automorphisms act transitively on Q. The homogeneity is provided by affine auto-
morphisms.
4. Symmetry : (a) the hyperquadric is the most symmetric non-degenerate hyper-

surface in that the dimension of the germ group of a non-degenerate hypersurface
does not exceed the dimension of the germ group of the tangent hyperquadric;
(b) the algebra of the model surface parametrizes the family of maps of one non-
degenerate germ into another.
5. Algebraic properties: (a) the Lie algebra of holomorphic vector fields on a

non-degenerate hyperquadric is an algebra of polynomial vector fields of bounded
degree; in our case, the degrees of the coefficients do not exceed two; (b) the
automorphism group of a non-degenerate hyperquadric is a Lie subgroup of the
group of linear-fractional transformations of Cn+1.

The algebra autQ has the following structure (the gradation is the same):
autQ = g−2 + g−1 + g0 + g1 + g2. Moreover, the components admit the following
explicit description:

g−2 =

{
2Re

(
q
∂

∂w

)}
,

g−1 =

{
2Re

(
p
∂

∂z
+ 2i〈z, p〉 ∂

∂w

)}
,

g0 =

{
2Re

(
λz
∂

∂z
+ ρw

∂

∂w

)}
,

g1 =

{
2Re

(
(aw + 2i〈z, a〉z) ∂

∂z
+ 2i〈z, a〉w ∂

∂w

)}
,

g2 =

{
2Re

(
rwz

∂

∂z
+ rw2

∂

∂w

)}
,

where q, r ∈ R, p, a ∈ Cn, and the n × n matrix λ is related to the real number ρ
by the formula 2Re〈λz, z〉 = ρ〈z, z〉. The subalgebra g− = g−2+ g−1 generates the
subgroup

Aut−Q =
{
z → z + p, w→ w + 2i〈z, p〉 + (q + i〈p, p〉)

}
,

which acts transitively on Q and is known as the Heisenberg group. The subalgebra
g0 + g1 + g2 generates the subgroup of automorphisms of Q preserving the origin
(the stabilizer subgroup). The subalgebra g0 generates the subgroup Aut0Q that
is the connected component of the group LAutQ of all linear automorphisms of Q
preserving the origin. To obtain a description of this group, let us consider a more
general situation. Suppose that a map of the form

f = Λz + f2 + · · · , g = ρw + g3 + · · · (8)
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takes a hypersurface germ

Imw = 〈z, z〉1 + F1(z, z,Rew) (9)

to a hypersurface germ

Imw = 〈z, z〉2 + F2(z, z,Rew) (10)

of the same form, where the components F1 and F2 are of weight ≥ 3. Rewriting
the condition that (8) takes (9) to (10) in the form of an identity and isolating
components of weight 1 and 2 in this identity, we find that the linear part of the
map has the form (

Λ ∗
0 ρ

)
,

and moreover, 〈Λz,Λz〉2 = ρ〈z, z〉1. This computation has several corollaries:
(1) the action of holomorphic maps on the Levi form reduces to the action of

the Lie group GL(n,C)⊕R∗ by the formula 〈z, z〉 → ρ〈Λ−1z,Λ−1z〉;
(2) two model hypersurfaces Q1 and Q2 are holomorphically equivalent if and
only if they are linearly equivalent;

(3) the group LAutQ of linear automorphisms of Q preserving the origin has
the form z → Λz, w → ρw, where 〈Λz,Λz〉 = ρ〈z, z〉, and the algebra g0 is
the Lie algebra of this group.

The algebra g+ = g1 + g2 generates the group Aut+Q of non-linear automor-
phisms of Q that preserve the origin and have linear part with the block form(

Idn ∗
0 1

)
.

The group Aut+Q consists of linear-fractional transformations of C
n+1 of the form

z → z + aw

1− (2i〈z, a〉+ (r + i〈a, a〉)w) ,

w → w

1− (2i〈z, a〉+ (r + i〈a, a〉)w) .

Let us write out the dimensions:

dim g−2 = dim g2 = 1, dim g−1 = dim g1 = 2n,

dimLAutQ = dim g0 = n
2 + 1, dimAut−Q = dimAut+Q = 2n+ 1,

dimAutQ = (n+ 2)2 − 1.

For n > 1 there are finitely many pairwise non-equivalent model hypersurfaces. If
(µ, ν) is the signature of a non-degenerate form, then the only invariant is |µ−ν|. A
model hypersurface is equivalent to the hypersphere only if the form is sign definite.
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For n = 2 there are two non-equivalent models, v = |z1|2+|z2|2 and v = |z1|2−|z2|2.
Despite the existence of non-equivalent hyperquadrics, the dimensions of the groups
are the same for all classes.
The hyperquadric is not the only homogeneous hypersurface in the complex

space. The list of such surfaces in C2 was obtained in 1932 by E. Cartan [20]. It
includes separate hypersurfaces as well as families depending on one real parameter.
Cartan’s list is also remarkable in that all hypersurfaces are described as level lines
of elementary functions.
In a series of papers (see [40] and other papers), Loboda attempted to construct

a classification of homogeneous hypersurfaces in C3 and gave a long list of such
surfaces. The work is apparently close to completion. Loboda’s list shares the
properties of Cartan’s list: the moduli space is finite-dimensional (two-dimensional
families), and the surfaces are represented via elementary functions.

§ 4. A quadratic model of a higher-codimensional germ
4.1. Construction of the model. Now let Mξ be a smooth surface germ of
arbitrary dimension k � 1 in CN , that is, the set of common zeros of several
smooth function germs vanishing at ξ. Thus, Mξ = {ζ ∈ CN : ρ1(ζ) = · · · =
ρk(ζ) = 0}. The smoothness of the germ is guaranteed by the linear independence
of the gradients (grad ρ1(ξ), . . . , gradρk(ξ)) viewed as vectors in the space R

2N .
However, even at the level of 1-jets one can encounter a certain relation, which we
wish to eliminate. Thus, we require the gradients to be linearly independent over
the field of complex numbers. In this case, the germ is referred to as generating,
and if n is the dimension of the complex tangent space, then n + k = N and the
real dimension of the germ is 2n+ k.
Thus, let Mξ be a generating surface germ of type (n, k) in C

n+k, where n � 1,
k � 1. By choosing appropriate coordinates (z = (z1, . . . , zn), w = (w1, . . . , wk)),
one can reduce the germ equations to the form Imw = F (z, z,Rew), where F has
no free or linear terms. Introducing weights of the coordinates and performing a
quadratic transformation by analogy with the case of a hypersurface, we obtain the
germ equation in the form

Imw = 〈z, z〉+ O(3). (11)

The surface Q = {Imw = 〈z, z〉} will be called the tangent quadric of Mξ by
analogy with the case of hypersurfaces. The main distinction from that case is that
now the Hermitian form 〈z, z〉 = (〈z, z〉1, . . . , 〈z, z〉k) is vector-valued.
The first problem that arises here is finding a criterion for the automorphism

group of the quadric to be finite-dimensional. There are two obvious cases in which
this group fails to be finite-dimensional. First, the form may have a non-zero kernel.
Suppose that there is a vector e �= 0 such that 〈e, z〉 = 0 for all z ∈ Cn. We perform
a linear change of variables in Cn taking e to the first vector (1, 0, . . . , 0) of the
standard basis. After that, the form does not contain the variable z1 in any of
the coordinates. An arbitrary change of variables of the form z1 → f(z1), where
f ′(0) �= 0 (the remaining variables are not affected), is now an automorphism,
and so the group AutQ is infinite-dimensional. Second, the coordinate Hermitian
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forms may be linearly dependent. For example, let 〈z, z〉1 be a linear combination
of the other forms. Then after an appropriate linear change of the variable w the
form 〈z, z〉1 is equal to zero. The change of variables g1 → g(w1) (the remain-
ing variables are not affected), where g is an arbitrary locally invertible power
series with real coefficients, is now an automorphism, and the group AutQ
is again infinite-dimensional. It turns out that there are no other cases in which
the group can be infinite-dimensional. For this reason these two conditions
are taken as the definition of non-degeneracy of a vector-valued Hermitian
form [11].

Definition 1. We say that a Hermitian form 〈z, z〉 = (〈z, z〉1, . . . , 〈z, z〉k) and the
corresponding quadric are non-degenerate if the following conditions hold:

(a) if 〈e, z〉 = 0 for all z, then e = 0;
(b) the forms (〈z, z〉1, . . . , 〈z, z〉k) are linearly independent.

If k = 1, then condition (a) is just ordinary non-degeneracy and condition
(b) follows from (a). We note that condition (b) cannot hold for k > n2; thus,
a generic quadric is non-degenerate only if the codimension lies in the range
k = 1, . . . , n2.

It turns out that a quadric of type (n, k) is a good model of a germ of the same
type for k � n2; namely, the following assertions hold ([11], [12]).
1. Universality : an arbitrary generating germ of type (n, k) in Cn+k is equivalent

to a germ of the form (11).

2. Finite dimension: (a) the group of holomorphic automorphisms of a generic
quadric is a finite-dimensional Lie group; (b) the group of holomorphic automor-
phisms of Q is finite-dimensional if and only if the form 〈z, z〉 is non-degenerate
(in the sense of Definition 1); (c) every surface specified by equations of degree less
than two has an infinite-dimensional group.

3. Homogeneity : the quadric Q is homogeneous; that is, its holomorphic auto-
morphisms act on Q transitively. The homogeneity is provided by affine automor-
phisms.

4. Symmetry : (a) the quadric is the most symmetric non-degenerate surface in
that the dimension of the germ group of a non-degenerate surface does not exceed
the dimension of the germ group of the tangent quadric; (b) the automorphism
algebra of the quadric parametrizes the family of maps of one non-degenerate germ
into another.

5. Algebraic properties: (a) the Lie algebra of holomorphic vector fields on a
non-degenerate quadric is an algebra of polynomial vector fields of bounded degree,
and the degrees of the coefficients do not exceed two; (b) the automorphism group
of a non-degenerate quadric is a Lie subgroup of the group of birational transforma-
tions of Cn+k with uniformly bounded degrees [60]; more precisely, one can estimate
the degrees of numerators and denominators in a non-cancellable representation
by 4(n+k) [13]; (c) if two germs are equivalent, then so are their tangent quadrics;
two quadrics are holomorphically equivalent if and only if they are linearly
equivalent.
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The algebra autQ has the same structure autQ = g−2+ g−1+ g0+ g1+ g2 (and
the same gradation), and the components admit the following explicit description:

g−2 =

{
2Re

(
q
∂

∂w

)}
, where q ∈ Rk;

g−1 =

{
2Re

(
p
∂

∂z
+ 2i〈z, p〉 ∂

∂w

)}
, where p ∈ Cn;

g0 =

{
2Re

(
λz
∂

∂z
+ ρw

∂

∂w

)}
,

where λ and ρ are an n×n and a k×k matrix, respectively, related by the formula
2Re〈λz, z〉 = ρ〈z, z〉;

g1 =

{
2Re

(
(aw + A(z, z))

∂

∂z
+ 2i〈z, aw〉 ∂

∂w

)}
,

where A is a quadratic Cn-valued form and a is a linear map from Ck into Cn

related to A by the formula 〈A(z, z), z〉 = 2i〈z, a〈z, z〉〉;

g2 =

{
2Re

(
(B(z, w))

∂

∂z
+ r(w,w)

∂

∂w

)}
,

where B is a bilinear Cn-valued form and r is a quadratic Ck-valued form related
to B by the formula Re〈B(z, u), z〉 = r(〈z, z〉, u), Im〈B(z, 〈z, z〉), z〉 = 0.
The group corresponding to g− = g−2 + g−1 is completely similar to the group

arising for k = 1. This is the group Aut−Q of affine transformations of the form{
z → z + p, w→ w + 2i〈z, p〉+ (q + i〈p, p〉)

}
,

which acts on Q transitively (an analogue of the Heisenberg group).
One can readily show that the subgroup LAutQ of linear automorphisms consists

of transformations z → Λz, w → ρw, where Λ ∈ GL(n,C), ρ ∈ GL(k,R), and
moreover, 〈Λz,Λz〉 = ρ〈z, z〉. The algebra g0 is the Lie algebra of this group.
The subalgebra g+ = g1+ g2 generates the subgroup Aut+Q of transformations

Q of the form z → z+ f2+ · · · , w→ w+ g3+ · · · . This is a subgroup of non-linear
automorphisms preserving the origin. There is no clear explicit description of this
subgroup similar to that in the case k = 1. Results concerning the structure of
this subgroup will be discussed later in this paper. Here we mention only that
instead of linear-fractional transformations one has birational transformations of
bounded degree (Tumanov’s theorem); we have included this result in the list as
property 5(b).
The key result in the list is the assertion that the algebra of a non-degenerate

quadric consists of fields with quadratic coefficients. For k = 1 this follows from
the main lemma in the first part of the Chern–Moser paper [21]. For k > 1 there
is a very similar construction that permits one to reduce the solution of the main
equation (the tangency condition) in formal series to the solution of a system of
linear differential equations with constant coefficients. However, in contrast to the
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case of a hypersurface, these are partial rather than ordinary differential equations.
The main role in the derivation of the criterion for the automorphism group to
be finite-dimensional is played by the Ehrenpreis–Malgrange–Palamodov theorem
on an exponential representation of solutions of a system of linear partial differ-
ential equations with constant coefficients. By this theorem, the solution space of
the system is finite-dimensional if and only if the characteristic set is finite. The
non-degeneracy of the Hermitian form for the system of equations to which the
tangency condition can be reduced implies that the characteristic set contains only
the origin. This simultaneously proves that the solutions are polynomial. An addi-
tional argument shows that the degrees of the solutions actually do not exceed two
[11], [12].

Item 5(c) of the list follows from the fact that the action of holomorphic maps
on surface germs induces a linear action on the tangent quadrics. Indeed, suppose
that there are two equivalent germs

M1 = {Imw = 〈z, z〉1 + · · · } and (12)

M2 = {Imw = 〈z, z〉2 + · · · } (13)

and z → f(z, w), w → g(z, w) is a map of the first germ into the second. By
analyzing lower-order components of the corresponding relation, one can readily
see that f = Λz+ f2+ · · · , g = ρw2+ g3+ · · · , and moreover, 〈Λz,Λz〉2 = ρ〈z, z〉1.
Two conclusions are now in order. First, ifM1 andM2 are quadrics, then the linear
map z → Λz, w→ρw takesM1 to M2. Second, the action of a holomorphic map on
a surface germ induces the following action of the group GL(n,C) ⊕ GL(k,R)
on the form 〈z, z〉: 〈z, z〉 → ρ〈Λ−1z,Λ−1z〉. In turn, this means that all invariants
of the form with respect to this action are invariants of the germ with respect
to biholomorphic transformations. We shall return to the construction of these
invariants in what follows.

The Levi form has an intrinsic definition (for example, see [22]) via the commu-
tator of vector fields. Let us choose a complement of the complex tangent space in
the entire tangent space. Then the Levi form is a Hermitian form on the complex
tangent space with values in this complement and coinciding with the Levi form
〈z, z〉 of the germ at the marked point. This definition can be extended to abstract
CR-manifolds. If two CR-manifold germs are CR-equivalent, then their Levi forms
are related by the action of GL(n,C) ⊕ GL(k,R) mentioned above. Hence arbi-
trary invariants of a vector Hermitian form are automatically CR-invariants of a
CR-manifold.

The non-degeneracy condition is the weakest condition that guarantees finite
dimensionality. There are other natural conditions that imply the non-degeneracy
condition.

For example, a quadric is said to be strongly non-degenerate if the coordinate
forms 〈z, z〉 = (〈z, z〉1, . . . , 〈z, z〉k) are linearly independent and some linear com-
bination of these forms is non-degenerate in the ordinary (scalar) sense. The two
definitions are equivalent for quadrics of type (2, 2). The case of type (3, 2) is
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the lowest-dimensional type in which they differ. The simplest example of a non-
degenerate quadric that is not strongly non-degenerate is as follows:

H1 =


 1 1 0
1 0 0
0 0 0


 , H2 =


 1 0 10 0 0
1 0 0


 .

A strongly non-degenerate quadric is said to be positive definite if there is a
positive-definite linear combination of coordinate forms. Positive-definite quadrics
are the skeletons (Shilov boundaries) of Siegel domains of second kind. Siegel
domains play an important role in the theory of homogeneous bounded domains
and automorphic functions [34], [48], [42].
To each vector-valued Hermitian form 〈z, z〉 one can assign the cone C =

int(conv({〈z, z〉 : z ∈ Cn})), that is, the set of interior points of the convex hull of
the image of Cn under the map specified by the form. If the cone C is non-empty
and acute, then the corresponding Siegel domain

D =
{
(z, w) ∈ Cn ⊕Ck : Imw − 〈z, z〉 ∈ C

}
is a homogeneous domain biholomorphically equivalent to a bounded domain.
Moreover, D is the hull of holomorphy of the quadric Q = {(z, w) ∈ Cn ⊕ Ck :

Imw = 〈z, z〉} [42]. Thus, positive-definite quadrics are shared by the theory
of homogeneous bounded domains and our theory of good models. A number of
results discussed here (the finite dimensionality of the automorphism group,
the birationality of automorphisms, and the description of the structure of the
infinitesimal automorphism algebra [50]) were obtained in the special case of
positive-definite quadrics as results about Siegel domains and their skeletons.

4.2. The classification of quadrics. We have already noted that the action of
holomorphic maps on germs of type (n, k) induces the following action of the group

GL(n,C) ⊕ GL(k,R) on the form 〈z, z〉: 〈z, z〉 → ρ〈Λ−1z,Λ−1z〉. If we represent
the form by a finite sequence (H1, . . . , Hk) of Hermitian matrices, then the action
is given by (Λ, ρ)(H1, . . . , Hk) = ρ((Λ

∗)−1H1Λ
−1, . . . , (Λ∗)−1HkΛ

−1). There is a
simple way to reduce this action to an action of GL(n,C). One proceeds from
the representation of a quadric by a set of k linearly independent vectors in the
real linear space of Hermitian matrices to the representation by a k-dimensional
plane in this space. Thus, if we do not distinguish quadrics that differ by a linear
change of the variable w, then the set of quadrics of type (n, k) can be identified

with the real Grassmannian manifold Grk(R
n2). In this representation, the action

is reduced to the standard action of GL(n,C) on this Grassmannian manifold.
Classes of equivalent quadrics are orbits of this action. The linear subgroup of
the automorphism group of a quadric corresponds to the subgroup of GL(n,C)
preserving the corresponding k-dimensional plane.
The classification of quadrics of arbitrary type with respect to this action seems

to be intractable. However, the problem has a fairly good answer for some types
of quadrics, namely, for k = 1, 2, n2 − 2, n2 − 1, n2. The number of equivalence
classes of non-degenerate quadrics of type (n, 1) is finite and is equal to the integer
part of n+2

2
. All non-degenerate quadrics of type (n, n2) are equivalent, since each of
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them can be represented by a basis consisting of n2 matrices and any two bases are
related by a linear transformation. Thus, there is only one class of such quadrics.
The classification problem for quadrics of codimension two was completely solved
by Shevchenko [52], [53].

4.3. Quadrics of codimension two. Quadrics of codimension two are quadrics
of type (n, 2), the type that follows hyperquadrics. Each quadric of type (n, 2) is
specified by a pair of Hermitian matrices H1 and H2 by the formula Q = {Imw1 =
H1z · z, Imw2 = H2z · z}. The classification of a pair of Hermitian forms modulo
linear changes of the variable z is a classical problem of linear algebra. It is well
known that two forms can be reduced to a diagonal form simultaneously provided
that one of them is positive definite. The theorem [35] on the canonical form of a
pair of forms one of which is non-degenerate is also fairly well known. However, it
is not sufficient even for the classification of non-degenerate quadrics, since there
are non-degenerate quadrics of codimension two such that all linear combinations
of coordinate forms are degenerate. Thus, one needs the most general classification
theorem [62]. Using this classification together with the additional possibility of
passing to linear combinations of the forms, Shevchenko constructed a complete
classification of quadrics of codimension two.

To each pair (H1, H2) of Hermitian matrices one assigns the matrix pencil
(t1H1+t1H2), its characteristic polynomial det(t1H1+t2H2), where (t1 : t2) ∈ CP1,
the set of roots of this polynomial, and also a set of integer parameters including
the minimal indices and factors of inertia (see [62]). Two pairs of Hermitian forms
are equivalent with respect to changes of the variable z if and only if they have
the same roots, minimal indices of inertia, and factors of inertia. By studying the
action of GL(2,R) (changes of the variable w) on this set of data, one can obtain
a criterion for the equivalence of two quadrics. Namely, the first set of roots must
be taken to the second by a linear-fractional transformation with real coefficients,
and some relations between the minimal indices and factors of inertia of the
first and the second pair must hold.

The canonical form of a pair of matrices is block diagonal (like the Jordan normal
form), where the diagonals contain pairs of cells of three types. The first type
corresponds to a real root, and the parameters of the corresponding cells include
the root itself, the cell size, and the inertia factor. The second type corresponds to
a pair of complex-conjugate roots, and the parameters include one of the roots and
the cell size (which is even). The third type corresponds to the root at infinity
and is solely determined by the cell size (which is odd). The cell sizes are determined
by the elementary divisors of the pencil for the first two types and by the minimal
indices for the third type. The canonical form of a strongly non-degenerate quadric
contains only cells of the first two types.

In general position, the characteristic polynomial has n distinct roots. For n � 4,
a system of n distinct ordered points on the complex plane has n − 3 numerical
invariants (double ratios) with respect to the group of linear-fractional transfor-
mations. This set of parameters, together with the discrete invariants, specifies
an equivalence class of quadrics of codimension two. It follows that for n � 3 the
number of equivalence classes of quadrics of type (n, 2) is finite: there are three
classes for n = 2 and ten classes for n = 3.
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The above description of the infinitesimal automorphism algebra of a quadric
is explicit modulo finding the values of the parameters (p, q,Λ, ρ, a, A, B, r) from
the defining relations (see 4.1). For a given quadric, these relations form a system
of linear algebraic equations for the unknown parameter values. The coefficients of
these equations depend on the entries of the Hermitian matrices specifying the form
〈z, z〉. This dependence is linear in all relations except for one, where the depen-
dence is quadratic. The classification obtained for the case of codimension two
permits one to describe the solution space of this system explicitly and to answer a
number of qualitative questions, mainly about the dimensions of the graded com-
ponents of the algebra autQ = g−2 + g−1 + g0 + g1 + g2. The parameters p and q
specifying the components g−2 and g−1 are not subjected to any relations, and
accordingly, dim g−2 = 2 and dim g−1 = 2n for an arbitrary quadric of codimension
two. A description of g0, g1, and g2, as well as a computation of their dimensions
in terms of invariants of the pencil t1H1 + t2H2, can be found in [52]. Let us state
some results of that paper.
1. Suppose that the quadric is strongly non-degenerate. We can assume that

detH1 �= 0 and set H = (H1)−1H2. There are three possible cases.
1.1. If the matrix H is diagonalizable (by changes of the variable z) and has two

distinct eigenvalues, then dim g1 = 2n and dim g2 = 2.
1.2. If H has a single eigenvalue λ and (H − λE)2 = 0, then also dim g1 = 2n

and dim g2 = 2.
1.3. In all other cases, dim g1 = 0 and dim g2 = 0.
2. If the quadric is non-degenerate but not strongly non-degenerate, then

dim g1 < 2n and dim g2 = 2.
3.1. If n = 2, then 4 � dim g0 � 5.
3.2. If n � 3, then n+ 1 � dim g0 � (n− 1)2 + 4.
Thus,

10 � dim g0 + dim g1 + dim g2 � 11 for n = 2;
n+ 1 � dim g0 + dim g1 + dim g2 � n2 + 7 for n � 3.

Every non-degenerate quadric of type (2, 2) is equivalent to one of three quadrics
Q1, Q−1, and Q0. Let us describe these quadrics. First,

Q1 =
{
Imw1 = |z1|2 + |z2|2, Imw2 = z1z2 + z2z1

}
.

The characteristic polynomial of Q1 has two real roots. This quadric is the direct
product of two quadrics of type (1, 1) and can be represented in some other coordi-
nates in the form Q1 = {Imw1 = |z1|2, Imw2 = |z2|2}. The dimensions of compo-
nents of the corresponding algebra are dim g0 = 4, dim g1 = 4, and dim g2 = 2. We
note that this quadric is positive definite, that is, it is the canonical form of any
positive-definite quadric of type (2, 2). Second,

Q−1 =
{
Imw1 = |z1|2 − |z2|2, Imw2 = z1z2 + z2z1

}
.

The characteristic polynomial of Q−1 has two complex-conjugate roots. The dimen-
sions of the components of the corresponding algebra are the same as for Q1.
Finally,

Q0 =
{
Imw1 = |z1|2, Imw2 = z1z2 + z2z1

}
.
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The characteristic polynomial of Q0 has a single multiple root, dim g0 = 5,
dim g1 = 4, and dim g2 = 2.
Ezhov and Schmalz suggested the following terminology: Q1 is a hyperbolic

quadric, Q−1 is an elliptic quadric, and Q0 is a parabolic equation. In the eight-
dimensional real linear space of quadrics of type (2, 2), quadrics equivalent to Q1
and Q−1 lie on different sides of the conical second-order hypersurface of quadrics
equivalent to Q0. All three quadrics are strongly non-degenerate, and so each non-
degenerate quadric of type (2, 2) is strongly non-degenerate [39], [12], [26].
Each quadric of type (3, 2) is equivalent to a single quadric from the following

list, which contains ten entries. We arrange the data about the dimensions of the
components g0, g1, and g2 for each quadric in the form (d0 + d1 + d2 = d).
The quadrics Q1 and Q2 correspond to the case of three distinct real eigenvalues,

which implies that the quadric is diagonalizable (simultaneous reduction to sums
of squares). Furthermore, Q1 is positive definite.

Q1 =
{
Imw1 = |z1|2 + |z2|2 + |z3|2, Imw2 = |z2|2 − |z3|2

}
(4 + 0 + 0 = 4),

Q2 =
{
Imw1 = −|z1|2 + |z2|2 + |z3|2, Imw2 = |z2|2 − |z3|2

}
(4 + 0 + 0 = 4).

The following four quadrics correspond to the case of two real eigenvalues. All cells
in the canonical form ofQ3 andQ4 are of first order, and both quadrics are reducible
(to a direct product of two hyperquadrics); moreover, Q3 is positive definite and
Q4 is not. The canonical forms of Q5 and Q6 contain a second-order cell.

Q3 =
{
Imw1 = |z1|2 + |z2|2, Imw2 = |z3|2

}
(7 + 6 + 2 = 15),

Q4 =
{
Imw1 = −|z1|2 + |z2|2, Imw2 = |z3|2

}
(7 + 6 + 2 = 15),

Q5 =
{
Imw1 = |z1|2 + 2Re(z2z3), Imw2 = |z1|2 + |z2|2

}
(6 + 0 + 0 = 6),

Q6 =
{
Imw1 = −|z1|2 + 2Re(z2z3), Imw2 = −|z1|2 + |z2|2

}
(6 + 0 + 0 = 6).

The following two quadrics correspond to the case of a single eigenvalue; Q7 has
first- and second-order cells, while Q8 has a third-order cell.

Q7 =
{
Imw1 = |z1|2 + 2Re(z2z3), Imw2 = |z2|2

}
(8 + 6 + 2 = 16),

Q8 =
{
Imw1 = |z2|2 + 2Re(z1z3), Imw2 = 2Re(z1z2)

}
(6 + 0 + 0 = 6).

The following quadric corresponds to the case of one real and two complex-conjugate
eigenvalues:

Q9 =
{
Imw1 = |z1|2 + 2Re(z2z3), Imw2 = 2 Im(z2z3)

}
(4 + 0 + 0 = 4).

The tenth and last quadric is non-degenerate but not strongly non-degenerate (a
zero-quadric). Its canonical form is given by a cell of the third type.

Q10 =
{
Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3)

}
(8 + 2 + 0 = 10).
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The dimension of the solution space of a system of linear equations is determined
by the rank of the system. Since the coefficients of our system depend on the coeffi-
cients of the Hermitian forms at most quadratically, it follows that the stratification
of quadrics with respect to the ranks of graded components is given by polynomial
relations. (Certain minors are equated to zero.) Hence, all dimensions attain their
minimum possible values outside a proper algebraic subset of the space of quadrics
(the direct sum of k copies of the space of Hermitian matrices). Thus, a generic
quadric of type (3, 2) is either Q1, or Q2, or Q9. In each of these three cases, there
are three distinct eigenvalues. They are real in the first two cases, and there is a
pair of complex-conjugate eigenvalues in the third case. The first case, in contrast
with the second, is positive definite.
A generic quadric of type (n, 2) has the following dimensions of components for

n � 3: dim g0 = n+ 1 and dim g1 = dim g2 = 0. The fact that this lower bound is
attained and hence indeed is realized for a generic quadric can be proved by con-
sidering an arbitrary diagonalizable quadric with distinct roots of the characteristic
polynomial, say,

{
Imw1 = |z1|2 + |z2|2 + · · ·+ |zn|2, Imw2 = 1|z1|2 + 2|z2|2 + · · ·+ n|zn|2

}
.

The upper bounds for the dimensions of components for a quadric of type (n, 2),
n � 2, are attained at the quadric

{
Imw1 = 2Re(z1z2) + |z3|2 + · · ·+ |zn|2, Imw2 = |z1|2

}
.

The dimensions of components are dim g−2 = dim g2 = 2, dim g−1 = dim g1 = 2n,
and dim g0 = (n − 1)2 + 4. We note that here, owing to g0, the total dimension
is greater by one than the dimension of the algebra corresponding to the reducible
quadric {

Imw1 = |z2|2 + |z3|2 + · · ·+ |zn|2, Imw2 = |z1|2
}
.

This description of the automorphism algebra enabled Ezhov and Schmalz to
prove that an arbitrary automorphism of a non-degenerate (n, 2)-quadric is real-
ized by a rational map of degree ≤ 2 [26]. We recall that automorphisms of
hyperquadrics are linear-fractional transformations. For strongly non-degenerate
quadrics of codimension two this result was obtained earlier by Abrosimov [1],
whose work is based on a different technique and is independent of Shevchenko’s
classification.

4.4. The rigidity phenomenon and exceptional quadrics. The one-codimen-
sional case has a peculiarity rarely observed in higher codimensions: a small defor-
mation of a non-degenerate hyperquadric in the class of hyperquadrics gives an
equivalent hyperquadric. This permits one to apply the technique due to E. Cartan
and methods of the theory of G-structures ([55], [58], [21], Part II, [61]). There are
two other cases with the same property, namely, the last two possible codimensions
k = n2 − 1 and k = n2 of non-degenerate quadrics. Moreover, these cases are also
distinguished in another respect: every such quadric has a non-trivial non-linear
subgroup Aut+Q. It turns out that for 2 � k � n2 − 2 a quadric in general posi-
tion (that is, outside some proper algebraic set) has no non-linear automorphisms.
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Moreover, for 3 � k � n2 − 3 the linear subgroup LAutQ of the automorphism
group of a generic quadric is trivial in the sense that it contains only scalar dilations
of the form {z → λz, w → |λ|2w, λ ∈ C∗} [12], [45], [30]. Such quadrics are said
to be rigid. The absence of non-linear automorphisms is referred to as N -rigidity,
and the absence of non-trivial linear automorphisms is called L-rigidity; thus, one
speaks of rigidity if both conditions hold simultaneously. One can also speak of
g0-rigidity (dim g0 = 2), g1-rigidity (dim g1 = 0), and g2-rigidity (dim g2 = 0).
These conditions are related to each other; for example, g2-rigidity follows from
g0-rigidity [12] as well as from g1-rigidity [44]. The automorphism group of a rigid
quadric consists of affine transformations, forming the same group Aut−Q for all
quadrics of given type, and scalar dilations. The cases k = 2 and k = n2−2 require
special treatment, since the subgroup of linear automorphisms of a generic quadric
is (n+1)-dimensional and hence is not exhausted by scalar dilations in these cases.

There is a deep cause behind the symmetry between quadrics of types (n, k)
and (n, n2 − k). A quadric of codimension k is a set of k linearly independent
Hermitian matrices. If we do not distinguish quadrics related by a linear change of
the variable w, then this is a k-dimensional plane in the n2-dimensional real linear
space H of Hermitian matrices. This plane admits a dual description as the set of
common zeros of n2 − k linearly independent linear forms on H. By choosing an
isomorphism between H and H∗, we obtain a correspondence between quadrics of
types (n, k) and (n, n2− k). Moreover, the linear subgroups LAutQ corresponding
to dual quadrics prove to be isomorphic.

Although a generic quadric of codimension between 3 and n2 − 3 is rigid, this
does not prohibit the existence of exceptional quadrics that have non-linear auto-
morphisms and a non-trivial linear subgroup. There is a simple method for con-
structing such quadrics: one takes direct products of quadrics. If the factors are
non-degenerate, then the algebra corresponding to the product is the direct sum of
the algebras corresponding to the factors, and accordingly, the automorphism group
is the direct product of the automorphism groups of the factors [12]. If the factors
have non-trivial groups, then so does the product. The list of quadrics of type
(3, 2) contains the reducible quadrics Q3 and Q4. The dimension of the subgroup
preserving the origin is equal to 15 for both quadrics. It is clear why these quadrics
have large automorphism groups. The dimension is equal to the sum of the dimen-
sions of the corresponding groups for the factors: 10 for a hyperquadric of type
(2, 1) and 5 for a hyperquadric of type (1, 1). However, the list also contains the
irreducible quadric Q7 with the corresponding stabilizer subgroup of dimension 16.
Thus, the classification problem for quadrics with non-linear automorphisms and
the problem of finding a maximally symmetric non-degenerate quadric, that is, a
quadric whose group is of maximal dimension for a given type, is rather interest-
ing. For quadrics of codimension two this problem can be solved on the basis of
Shevchenko’s classification (see above).

For quadrics of type (3, 3), that is, quadrics of codimension three in C6, this
problem was solved by Palinchak [43], [44]. Each (3, 3)-quadric possessing non-
linear automorphisms is equivalent to one of the following eight quadrics. We give
the data on the dimensions of components in the same format: dim g0 + dim g1 +
dim g2. We recall that dim g−2 + dim g−1 = 3 + 6 = 9 for all quadrics of this type
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and dimQ = 2n+ k = 9.

Q1 : Imw1 = |z1|2, Imw2 = |z2|2, Imw3 = |z3|2;
Q2 : Imw1 = |z1|2 − |z2|2, Imw2 = 2Re(z1z2), Imw3 = |z3|2;
Q3 : Imw1 = |z1|2, Imw2 = 2Re(z1z2), Imw3 = |z3|2.

Each of the first three quadrics is the direct product of a (2, 2)-quadric (see the list
above) by the unique (1, 1)-quadric. Since the first (2, 2)-quadric in the list is the
direct product of two (1, 1)-quadrics, it follows thatQ1 is the direct product of three
(1, 1)-quadrics. The dimensions of the groups are as follows: Q1 : (6 + 6+ 3 = 15),
Q2 : (6 + 6 + 3 = 15), and Q3 : (7 + 6 + 3 = 16).

Q4 : Imw1 = |z1|2, Imw2 = 2Re(z1z2), Imw3 = 2Re(z1z3) + |z2|2

(8 + 6 + 3 = 17);

Q5 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3), Imw3 = 2 Im(z1z2)

(10 + 6 + 3 = 19);

Q6 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3), Imw3 = |z3|2

(10 + 6 + 3 = 19);

Q7 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3), Imw3 = 2 Im(z2z3)

(8 + 6 + 3 = 17);

Q8 : Imw1 = 2Re(z1z2), Imw2 = 2 Im(z1z2), Imw3 = 2Re(z1z3) + |z2|2

(7 + 2 + 1 = 10).

We recall that a generic (3, 3)-quadric is rigid: the dimensions are (2+0+0= 2).
The above list does not contain quadrics whose automorphism group is linear but
non-trivial (dim g0 > 2). However, very coarse estimates show that dim g0 � 18.
Hence, one can claim that the dimension of the automorphism group of an arbi-
trary (3, 3)-quadric does not exceed 19, and if it is equal to 19, then the quadric
itself is equivalent to Q5 or Q6. Arbatskii [4] computed the automorphism group
for each of the quadrics in the list. All automorphisms are realized by birational
transformations of C6 of degree ≤ 3.
A generic (3, 4)-quadric is rigid, that is, has the structure (2 + 0 + 0). The

classification of quadrics of type (3, 4) (quadrics of codimension four in C7) with
non-linear automorphisms was constructed by Anisova [2], [3]. Every such quadric
is equivalent to one of the following nine pairwise non-equivalent quadrics:

Q1 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3),

Imw3 = 2 Im(z1z3), Imw4 = 2 Im(z2z3) (10 + 6 + 4 = 20);

Q2 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z2z3),

Imw3 = |z3|2, Imw4 = 2 Im(z2z3) (11 + 6 + 4 = 21);
Q3 : Imw1 = 2Re(z1z3), Imw2 = 2Re(z1z2),

Imw3 = |z2|2, Imw4 = |z1|2 (8 + 2 + 1 = 11);
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Q4 : Imw1 = 2Re(z1z2), Imw2 = −2 Im(z1z2),
Imw3 = 2Re(z1z3), Imw4 = |z2|2 (8 + 2 + 1 = 11);

Q5 : Imw1 = 2Re(z1z2), Imw2 = −2 Im(z1z2),
Imw3 = 2Re(z1z3), Imw4 = |z1|2 + |z2|2 (7 + 2 + 1 = 10);

Q6 : Imw1 = 2Re(z1z2), Imw2 = −2 Im(z1z2),
Imw3 = |z1|2, Imw4 = |z3|2 (10 + 4 + 4 = 18);

Q7 : Imw1 = 2Re(z1z2), Imw2 = −2 Im(z1z2),
Imw3 = |z1|2, Imw4 = 2Re(z1z3) + |z2|2 (8 + 4 + 2 = 14);

Q8 : Imw1 = 2Re(z1z2), Imw2 = |z1|2,
Imw3 = |z2|2, Imw4 = |z3|2 (7 + 2 + 2 = 11);

Q9 : Imw1 = 2Re(z1z2), Imw2 = 2 Im(z1z2),

Imw3 = |z1|2 − |z2|2, Imw4 = |z3|2 (7 + 2 + 1 = 10).

We point out that the first two quadrics are not strongly non-degenerate, and
moreover, the second quadric Q2 is the most symmetric quadric of type (3, 4). The
list includes the reducible quadrics Q6, Q8, and Q9, which are the direct products
of various (2, 3)-quadrics by the unique hyperquadric of type (1, 1).
Palinchak’s and Anisova’s classifications are based on Shevchenko’s classification

of pairs of third-order Hermitian matrices. The proof of pairwise non-equivalence of
the canonical quadrics in both classifications uses the dimensions of the compo-
nents of the corresponding algebras as well as the quadratic invariants constructed
in [13], [14]. These invariants will be discussed below.
One can observe from these classifications that in all cases there is a curious

symmetry: dim gj � dim g−j, j = 1, 2, and the upper bound is attainable. In
this connection, there was a conjecture that this is true for all types of quadrics.
However, Utkin [63] has recently shown that the symmetry can be violated for
(5, 3)-quadrics. His example can be generalized to n � 5 and k � 3.
It would be of interest to estimate the degree of non-linear automorphisms for

the exceptional quadrics. By Tumanov’s theorem [60], the automorphism group
is a Lie group that acts on the quadric by birational transformations of Cn+k of
bounded degree. Since the automorphism algebra consists of fields of degree ≤ 2,
one can prove that the degrees of the automorphisms do not exceed 4(n + k).
However, no one has been able to produce quadrics with automorphisms of degree
greater than k, even though quite a few situations have been studied. There are
fairly many quadrics whose degree is equal to the codimension: they occur in
Shevchenko’s, Palinchak’s, and Anisova’s lists, one can readily construct them
in the form of a direct product of hyperquadrics, and automorphisms of homo-
geneous Siegel domains of the second kind have the same degree. But the general
assertion is only a conjecture yet.

The degree conjecture. The automorphism group of a non-degenerate quadric of
type (n, k) acts by birational transformations of Cn+k whose degrees (the degrees
of numerators and denominators in the non-cancellable representation) do not
exceed the codimension k.
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The sort of groups that arise here as automorphism groups of non-degenerate
quadrics is worth attention. These are subgroups of the Cremona group (the group
of birational transformations of the complex linear space) consisting of transforma-
tions of bounded degree. In general, by substituting a rational transformation into
itself, we obtain a transformation of larger degree. This assertion is valid only in
general position, and our groups provide counterexamples. There is an example
in which it is obvious why the degree remains bounded under the substitution. This
example is given by projective transformations. Hence, one naturally attempts to
explain the existence of such subgroups by reducing them to projective transfor-
mations. In this connection, the following theorem is of interest (Zaitsev [66]).
Let G be a real connected Lie group acting on Cn by birational transformations

holomorphic in some domain (the same for the all elements of the group). Then
there is a linear representation of G in some CN+1 and a birational G-equivariant
map from Cn onto CPN .
A condition ensuring that automorphisms of a domain can be extended to bira-

tional transformations of the ambient space was given by Webster [65]. Zaitsev’s
theorem cannot be applied to automorphism groups of quadrics, but this does not
necessarily imply that its conclusion fails. We note, looking slightly ahead, that the
automorphism groups of model surfaces of degree greater than two have the same
property. They are subgroups of bounded degree in the Cremona group.

4.5. Real associative quadrics. Ezhov and Schmalz [28] described a very curi-
ous class of quadrics of type (k, k). Let A be a real k-dimensional commutative
associative algebra, and let AC = A ⊗ C be its complexification. To this algebra
we can assign the quadric

Q =

{
(z, w) ∈ AC ⊗AC :

1

2i
(w −w) = zz

}
;

here the Rk-valued Hermitian form is the product zz in the algebraAC. Conversely,
a quadric of type (k, k) admits a representation of this kind if and only if in appro-
priate coordinates the form 〈 · , · 〉 determines a real associative product on Rk. The
commutativity of this product follows from the Hermitian property.
These quadrics are called RAQ-quadrics (Real Associative Quadrics).
The associativity condition is equivalent to the requirement that the map

τ : A→ gl(R, k), x �→ 〈 · , x〉

be an algebra homomorphism. An RAQ-quadric is non-degenerate if and only if
and only if A is unital. The quadric splits into a direct product whenever the
algebra has a direct sum decomposition.
The only non-degenerate (1, 1)-quadric is an RAQ-quadric. The corresponding

algebra is R.
All three non-degenerate (2, 2)-quadricsQ1, Q0, andQ−1 are also RAQ-quadrics.

The corresponding algebras are R ⊗ R, C, and R ⊗ nR, respectively. (Here n is a
nilpotent with n2 = 0.)
For the (3, 3)-quadrics from Palinchak’s list, the situation is as follows. The

quadrics Q1, Q2, Q3 are reducible and hence are RAQ-quadrics. Only two of the
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five irreducible quadrics, namely,Q4 andQ6, are RAQ-quadrics. The corresponding
algebras are, respectively, R ⊗ n1R ⊗ n2R, where n21 = n22 = n1n2 = 0, and
R⊗ nR⊗ n2R, where n3 = 0.
The group Aut+Q of non-linear automorphisms of an RAQ-quadric Q is deter-

mined by a formula completely similar to the formula for the automorphisms of the
(1, 1)-quadric:

z �→ (Idk −2iaz − (r + iaa)w)−1(z + aw),
w �→ (Idk −2iaz − (r + iaa)w)−1w,

where a ∈ AC and r ∈ A. Thus, dimAut+Q = 3k for an RAQ-quadric, and
moreover, dim g1 = 2k and dim g2 = k. In particular, this means that Palinchak’s
list contains all (3, 3)-RAQ-quadrics. It is not clear what causes the existence of
non-linear automorphisms for the remaining three quadrics. Even one of the two
quadrics Q5 and Q6 with the richest automorphism groups, namely, Q5, is not an
RAQ-quadric. Apparently, some other algebraic structures underlie these quadrics.

4.6. The Ezhov–Schmalz matrix arithmetic. The results of this subsection
are also due to Ezhov and Schmalz [26]–[29], [31].

Shevchenko’s classification shows that (n, 2)-quadrics possessing non-linear auto-
morphisms can be divided into hyperbolic, elliptic, parabolic, and null quadrics by
analogy with the classification of (2, 2)-quadrics. A hyperbolic quadric is the direct
product of two hyperquadrics and can be specified by relations of the form

v1 =
r∑
1

εi|zi|2, v2 =
n∑
r+1

εi|zi|2.

Elliptic quadrics exist only in even dimensions and are given by the relations

v1 =

n/2∑
1

Re(z2i−1z2i), v2 =

n/2∑
1

Im(z2i−1z2i).

Parabolic quadrics are given by

v1 =
s∑
1

εi|z2i|2, v2 =
s∑
1

2Re(z2i−1z2i) +
n∑
2s+1

εi|zi|2.

In these formulae, εi = ±1.
We represent the variables z by a matrix Z and the variables w by a matrix W .

The correspondence is defined separately for each type of quadric. In the hyperbolic
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case we set

Z =




z1 0
...

...
zr 0
0 zr+1
...

...
0 zn



,

Z =

(
ε1z1 . . . εrzr 0 . . . 0
0 . . . 0 εr+1zz+1 . . . εnzn

)
,

W =

(
w1 0
0 w2

)
, W =

(
w1 0
0 w2

)
.

For elliptic quadrics we set

Z =




z1 −z2
z2 z1
...

...
zn/2−1 −zn/2
zn/2 zn/2−1


 ,

Z =

(
z1 −z2 . . . zn/2−1 −zn/2
z2 z1 . . . zn/2 zn/2−1

)
,

W =

(
w1 −w2
w2 w1

)
, W =

(
w1 −w2
w2 w1

)
.

Finally, for parabolic quadrics we set

Z =




z1 0
z2 z1
...

...
z2s−1 0
z2s z2s−1
z2s+1 0
zn 0



,

Z =

(
ε1z1 0 . . . εsz2s−1 0 0 . . . 0
z2 z1 . . . z2s z2s−1 ε2s+1z2s+1 . . . εnzn

)
,

W =

(
w1 0
w2 w1

)
, W =

(
w1 0
w2 w1

)
.

In all three cases the quadric Q is determined by the same matrix equation

1

2i
(W −W ) = ZZ,
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and all automorphisms in Aut+Q are given by a unified formula, completely similar
to the formula for linear-fractional automorphisms of the (1, 1)-quadric:

Z �→ (Z + AW )(Id−2iAZ − (R+ iAA)W )−1,
W �→W (Id−2iAZ − (R+ iAA)W )−1.

The parameters a ∈ Cn and r ∈ R2 are represented by matrices A and R according
to the same rules as z and w. Moreover, dimAut+Q = 2n + k, dim g1 = 2n,
and dim g2 = 2 for all three classes. The formula is a matrix linear-fractional
expression, and so the degree of the automorphisms described by this formula is
equal to two, which corroborates the degree conjecture (the degree does not exceed
the codimension).
These three classes do not exhaust all quadrics of codimension two with non-

linear automorphisms. The fourth and last class, which is absent in the (2, 2) case,
is the class of so-called null quadrics. These are non-degenerate quadrics given by
pairs of matrices H1 and H2 such that all their linear combinations are singular,
that is, the characteristic polynomial P (t) = det(t1H1 + t2H2) is zero identically.
This means that the canonical form contains cells of the third type. Automorphisms
of null quadrics are projective transformations of CPn+k.
These constructions have been completed by a general formula for matrix linear-

fractional automorphisms of an arbitrary quadric.
Let A be a matrix algebra of the form

A =
{
(D, d) ∈ gl(C, n)× gl(C, k) : 〈Dz, z〉 = d〈z, z〉 for all z ∈ Cn

}
.

We consider multilinear maps

Â : Cn ⊗Cn → Cn (not necessarily symmetric),
a : Ck → Cn,

B : Cn ⊗Ck → Cn,
r̂ : Ck ⊗Ck → Ck (Hermitian)

satisfying the relations

〈Â(z, ζ), ξ〉 = 2i〈z, a〈ξ, ζ〉〉,
〈B(z, w), ζ〉 = r̂(w, 〈ζ, z〉).

Then the quadruple (A, a, B, r), where A(z, z) = Â(z, z) and r(u, u) = r̂(u, u),
satisfies the relations determining an element of Aut+Q (see 4.1). The converse is
not true in general.
The relations determining the quadruple (Â, a, B, r̂ ) are equivalent to the rela-

tions

(
A(z, · ), 2i〈z, a · 〉

)
∈ A,(

B( · , w), r(w, · )
)
∈ A
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for all z and w. Using this, one can show that the map

z �→
(
Idn−A(z, · )−B( · , w)− 12A(aw, · )

)−1
(z + aw),

w �→
(
Idk−2i〈z, a · 〉 − r(w, · )− i〈aw, a · 〉

)−1
w

is an automorphism of Q. In view of the analogy between this formula and auto-
morphisms of the 3-sphere in C2, already known to Poincaré, this formula is called
the Poincaré formula. Automorphisms of this type form a subgroup of the automor-
phism group of the quadric. The automorphisms of a null quadric of codimension
two are linear-fractional and hence are given by a formula of this type. Thus, all
automorphisms of non-degenerate quadrics of codimension two are described by the
Poincaré formula.
The first non-linear automorphisms that are not described by this formula were

discovered in the (3, 3) case. Of the eight quadrics with non-linear automorphisms
found by Palinchak, five (Q1, Q2, Q3, Q4, Q6) are RAQ-quadrics, their automor-
phisms being thereby described by the Poincaré formula. The Poincaré formula also
describes the automorphisms of Q5 and Q8. The quadric Q7 has a nine-dimensional
group Aut+Q7, but the subgroup of Poincaré automorphisms is trivial.
After this had been discovered, Ezhov and Schmalz constructed a more gen-

eral formula, which describes the automorphisms of an arbitrary non-degenerate
quadric. We do not give this rather complicated expression but only note that it is
a matrix linear-fractional expression, that is, not only linear operations and taking
the reciprocal are allowed but also products of two matrix expressions [31].

§ 5. Quadratic invariants of CRCRCR-manifolds: three flag constructions
The absence of non-trivial point-preserving automorphisms for a generic quadric

and the non-equivalence of two quadrics chosen at random can be viewed as
manifestations of the same phenomenon: quadrics have a rich system of
(GL(n,C)⊕GL(k,R))-invariants. The same invariants are holomorphic invariants
of a C2 surface in the complex space or even of an abstract, not necessarily
integrable CR-structure. The first invariant construction (the characteristic
polynomial) is due to Mizner [41], who studied CR-manifolds of codimension two.
The topic of CR-invariants was further developed in [13]–[16]. Garrity and
Mizner [33] described a system of generators of rational invariant functions.
The contents of this section reflects the author’s approach [13]–[16].
The first series of invariant sets Γ(p) is a system of embedded subsets of Cn

given by homogeneous polynomial conditions. Such sets can be viewed naturally
as algebraic subvarieties in CPn−1. Let (H1, . . . , Hk) be a k-tuple of Hermitian
matrices specifying an (n, k)-quadric. Then

Γ(p) =
{
z ∈ CPn−1 : rankC(H1z, . . . , Hkz) � p

}
.

In other words, the set Γ(p) consists of non-zero vectors z such that the dimension
of the system of k vectors (H1z, . . . , Hkz) does not exceed p. Moreover,

∅ = Γ(0) ⊆ Γ(1) ⊆ · · · ⊆ Γ(k − 1) ⊆ Γ(k) = CPn−1,
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that is, Γ is a system of embedded algebraic varieties (a flag) numbered by the
integers 0 � p � k.
The second series of sets γ(q), 0 � q � n, is defined as follows:

γ(q) =
{
w ∈ CPk−1 : rank(w1H1 + · · ·+ wkHk) � q

}
.

In other words, the set γ(q) consists of non-zero vectors w such that the rank of the
matrix (w1H1+ · · ·+wkHk) does not exceed q. For example, γ(n−1) is the zero set
of the characteristic polynomial of the pencil {P (w) = det(w1H1+· · ·+wkHk) = 0}.
Here we again have a flag of algebraic subvarieties in the projective space:

∅ = γ(0) ⊆ γ(1) ⊆ · · · ⊆ γ(n − 1) ⊆ γ(n) = CPk−1.

If n = 2, then γ(n−1) ∈ CP1 is the set of eigenvalues of the pencil w1H1+w2H2
and Γ(2) ∈ CPn−1 is the set of eigenvectors corresponding to eigenvalues in γ(n−1).
The flags obtained in the general case are a natural generalization of these problems:
the series γ generalizes the eigenvalue problem, and Γ generalizes the eigenvector
problem.
The third flag δ arises if one considers singularities of the projectivization of

a quadric. Let us pass from the affine coordinates (z, w), z ∈ Cn, w ∈ Ck, to
projective coordinates (T, Z,W ), T ∈ C1, Z ∈ Cn, W ∈ Ck, by the change of
variables z = Z/T , w =W/T ; then the equation of the closure Q of the quadric Q
acquires the form

ImWT = 〈Z, Z〉.

The projectivization of a hyperquadric is projectively holomorphic, projective auto-
morphisms act on it transitively, and the hyperquadric does not have singularities
at infinity. However, this is not the case for k � 2. Hypersurfaces whose intersec-
tion forms the quadric need not be transversal at infinity ({T = 0}). The coarsest
characteristic of the singularities arising in this case is given by the dimension
of the tangent space T (Q). This dimension determines a stratification of the set
Q∞ = Q \ Q and is determined by the rank of the system of gradients of the
functions determining the quadric. Let ej(T, Z,W ) = grad(− ImWjT + 〈Z, Z〉);
then

δ(r) =
{
(T, Z,W ) ∈ CPn+k : rankC(e1(T, Z,W ), . . . , ek(T, Z,W )) � r

}
.

The system δ is also a flag of algebraic subsets:

∅ = δ(0) ⊆ δ(1) ⊆ · · · ⊆ δ(n − 1) ⊆ δ(k) = CPn+k.

All three series are determined by inequalities involving ranks in the complex space.
One can obtain a finer stratification of Q∞ by considering the real counterparts of
these flags:

ΓR(p) =
{
z ∈ RP2n−1 : rankR(H1z, . . . , Hkz) � p

}
,

γR(q) =
{
u ∈ RPk−1 : rank(u1H1 + · · ·+ ukHk) � q

}
,

δR(r) =
{
(T, Z,W ) ∈ RP2n+2k : rankR(e1(T, Z,W ), . . . , ek(T, Z,W )) � r

}
.
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We also note two other invariant sets, namely, the Hermitian light cone S =
{z ∈ RP2n−1 : 〈z, z〉 = 0} and the zero set S′ = {(z, ζ) ∈ CP2n−1 : 〈z, ζ〉 = 0} of a
bilinear form.
If two germs are equivalent by a holomorphic map or a CR-map, then their

tangent quadrics are also equivalent, the equivalence being given by a linear map
of the form z → Cz, w→ ρw. That is why all above-mentioned subsets of the first
quadric are linearly equivalent to the respective subsets of the second quadric. This
equivalence is established:
for the flags Γ and ΓR, as well as for S1, S2, and S3, by the induced action of C

on CPn−1 and RP2n−1;
for the flags γ and γR, by the induced action of the matrix ρ′ (the transpose

of ρ) on CPk−1 and RPk−1;

for the flags δ and δR, by the induced action of the pair (C, ρ) on CPn+k and

RP
2n+2k.

Since w is subjected to real changes of variables, it follows that the real subspace
Rk = {Imw = 0} is invariant and γR is none other than γ ∩ Rk.
The characteristic polynomial P (w) = det(w1H1 + · · ·+ wkHk) is transformed

as follows: P (w)→ |det Λ|−2 P (ρ′w).
Thus, all linear invariants of all the above-mentioned sets constructed for some

given form 〈z, z〉 are biholomorphic invariants of a quadric and a surface germ as
well as CR-invariants of a CR-manifold germ with a given Levi form. Of these
invariants, we mention first of all the sets of dimensions and degrees. The list of
integer invariants also includes the dimensions (dim g0, dim g1, dim g2) of graded
components. A biholomorphic (or CR-) equivalence of two real manifolds implies
the linear equivalence of all the sets constructed above and the equality of all of
their linear invariants at each pair of the corresponding points.
For (2, 2)-quadrics each of the flags Γ,ΓR, γ, γR, δ, δR has only one informative

component, namely, the first. For the three standard (2, 2)-quadrics, the picture is
as follows:

Q1 : Γ(1) consists of two points; ΓR(1) consists of two points;

γ(1) consists of two points; γR(1) consists of two points;

δ(1) consists of one point; δR(1) consists of one point;

Q0 : Γ(1) consists of one point; ΓR(1) consist of two straight lines;

γ(1) consists of one point; γR(1) consists of one point;

δ(1) consists of two points; δR(1) consists of one point and one

straight line;

Q−1 : Γ(1) consists of two points; ΓR(1) is empty;

γ(1) consists of two points; γR(1) is empty;

δ(1) consists of three points; δR(1) consists of one point.

To distinguish the (3, 3)- and (3, 4)-quadrics in Palinchak’s and Anisova’s
lists, it suffices to use the characteristic polynomial P (w) and the light cone S.
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We start from Palinchak’s list:

Q1 : P (w) = w1w2w3, γR(2) consists of three straight lines;

Q2 : P (w) = −w3(w1 + iw2)(w1 − iw2), γR(2) consists of one straight line;

Q3 : P (w) = −(w2)2w3, γR(2) consists of two straight lines;

Q4 : P (w) = −(w3)3, γR(2) consists of one straight line,
S consists of one straight line;

Q5 : P (w) = 0, γR(2) is the entire space,

S is a cone of degree 4;

Q6 : P (w) = 0, γR(2) is the entire space,

S is a three-dimensional subspace;

Q7 : P (w) = 0, γR(2) is the entire space,

S consists of a three-dimensional subspace and a quadratic cone;

Q8 : P (w) = −(w3)3, γR(2) consists of one straight line,
S is a quadratic cone.

This suffices for the verification of the pairwise non-equivalence of these
quadrics. If we use the dimensions of components of the algebra in the proof
of non-equivalence, then it remains only to distinguish Q3 from Q4 and Q5 from Q9
in Anisova’s list. The first pair differs in the structure of the cone S, which is flat
for Q3 and is not flat for Q4. The second pair differs in the characteristic poly-
nomial. The decomposition of Q3 into irreducible components contains a multiple
linear factor (P (w) = w1

2(w1+w2)), while forQ4 all three linear factors are distinct
(P (w) = w4(w1 + iw2)(w1 − iw2)).
For a generic (3, 3)-quadric, both Γ(2) and γ(2) are non-singular cubic curves

in CP2. Such a curve is known to have nine inflection points; moreover, the set of
these nine points has no projective symmetries. (The double ratios of all quadruples
are distinct.) Using the asymmetry, we can order the points in such a way that if
there is a projective map of one cubic onto the other, then it takes the inflection
points of the first cubic to the inflection points of the second cubic with the order
preserved. (The first point is taken to the first, and so on.) For a self-map of
the quadric, the action on the complex tangent is thus reduced to scalar dilations
{z → λz}, where λ is a non-zero complex factor. This is the geometric cause of the
rigidity of the quadric.
Classification issues for a manifold with rigid tangent quadric can be solved very

easily [13], [16]. In particular, the reduction of a local equation of the manifold to
a normal form enables one to write out a complete system of local invariants of the
germ.
The invariant constructions described above enable one to find obstructions not

only to the equivalence of germs but also to the existence of non-invertible holo-
morphic maps of one germ into another. Needless to say, one can always define a
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constant map into an arbitrary germ, and so these obstructions have the form of
bounds on the degree of degeneration (the rank of the tangent map). This pertains
not only to maps of quadrics but also to maps of smooth manifold germs of various
types [15]. Obstructions for quadrics imply obstructions for germs with the given
tangent quadrics.
Although the assertions given below are stated for quadrics in general position

on the basis of information about the dimensions of invariant sets, one can study
singular quadrics in the same way. Thus, we claim that for each of the pairs listed
below the rank of the tangent map for a map of the first quadric into the second is
less by at least two than the maximum possible value. The list is as follows:
1. a (3, 1)-hyperquadric is mapped into a (3, 3)-quadric;
2. a (4, 1)-hyperquadric is mapped into a (4, 3)-quadric;
3. (3, 2)-quadric is mapped into a (3, 3)-quadric;
4. (3, 3)-quadric is mapped into a (4, 4)-quadric;
5. (3, 3)-quadric is mapped into a (3, 5)-quadric.

§ 6. Higher-order models
In the preceding sections we have tried to show that a non-degenerate real quadric

in the complex space is an object remarkable in many respects and that the descrip-
tion of automorphisms, the construction of a system of invariants, and the solution
of the classification problem for surface germs (or CR-manifold germs) can be
obtained on the basis of the solution of the respective problems for the tangent
quadric. The existence of this object is fortunate but rather surprising. Let us
explain this by discussing the choice of the degree d of the model (which is equal to
two for the quadric). Taken separately, the universality and homogeneity require-
ments both promote the reduction of d. Indeed, the model {Imw = 0} of degree
one of a real manifold is universal and homogeneous. The requirement that the
automorphism group must be finite-dimensional tends to increase d: the germ of a
surface of degree greater than two in general position (a non-degeneracy condition)
has a finite-dimensional automorphism group. It is good luck that there is a trade-
off between the two opposite tendencies at d = 2; the remaining requirements from
the list of properties of a good model can thus be viewed as free extras.
However, one encounters a difficulty as the codimension increases. The point is

that the dimension n2 of the space of n× n Hermitian matrices is finite. Once the
codimension exceeds this threshold value, the first part of the finite-dimensionality
condition cannot be satisfied. Accordingly, all quadrics of this type are degenerate,
and their automorphism groups are infinite-dimensional. Thus, for k > n2 one
cannot state a criterion for the finite dimensionality of the (n, k)-germ group in
terms of 2-jets, and we have to construct a new good model.
This phenomenon can be viewed from a different angle. Let T c(M) be the bundle

of real vector fields on M belonging to the complex part of the tangent plane at
each point. The Levi–Tanaka graded algebra is defined inductively by the relations

D1 = T c(M), Dj+1 = [Dj , D1] +Dj ,

where the bracket stands for the commutator of vector fields. If this sequence
stabilizes at the lth step (Dl−1 �= Dl = Dl+1 = · · · = D∞), then we say that the
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length of the algebra is equal to l. The Levi form is non-degenerate if and only
if the algebra is of length two and D∞ = T (M). This is clearly impossible for
k > n2. Higher codimensions require the use of higher-order commutators, which
in coordinate terms implies proceeding to jets of order higher than two.
There is yet another reason for considering higher degrees. All work on qua-

dratic models was performed in the second millennium, and the advent of the third
millennium stimulates one to consider models of degree three or higher.

6.1. A cubic model. Up to equivalence, there is a unique Hermitian form of
type (n, n2). Its components make up an arbitrary sequence of n2 scalar linearly
independent Hermitian forms. We denote this form by 〈z, z〉. Let k > 0. We
consider the surface Q3 in the space C

n ⊕Cn2 ⊕ Ck with coordinates (z ∈ Cn, w2 ∈
Cn

2

, w3 ∈ Ck), n > 0, k > 0, given by the equations

Imw2 = 〈z, z〉, Imw3 = 2ReΦ(z, z, z), (14)

where Φ(z, z, z) is a homogeneous Ck-valued form of degree two in z and degree
one in z. This is a surface of type (n,K = n2+ k), which is a complete analogue of
a non-degenerate quadric, that is, satisfies the entire list of requirements imposed
on a good model.
We say that Q3 is the tangent cubic for a germ of the same type if local equations

of the germ can be rewritten in the form

Imw2 = 〈z, z〉+ F3 + · · · , Imw3 = 2ReΦ(z, z, z ) +G4 + · · · . (15)

(We use the weights [z] = 1, [Rew2] = 2, and [Rew3] = 3.)

Definition. The surface (15) is said to be non-degenerate if 〈z, z〉 is a non-
degenerate Hermitian form of type (n, n2) and the coordinates of the form Φ(z, z, z)
are linearly independent.

Just as the Levi form admits an invariant definition, so does the cubic form Φ. To
construct an invariant definition of Φ, one must consider the repeated commutator
of (1, 0)-fields [17]. The length of the Levi–Tanaka algebra of Q3 is equal to 3.
The use of such surfaces is also restricted, since the dimension n2(n + 1) of the

space of cubic forms is finite. The fact that a non-degenerate surface Q3 of type
(n,K = n2 + k), k � n2(n + 1), is a good model surface for non-degenerate germs
of the same type can be expressed by the same list of properties [17], which
acquires the following form for d = 3.
1. Universality : an arbitrary generating Levi non-degenerate manifold germ of

type (n,K = n2 + k) in Cn+K is equivalent to a germ of the form (15).
2. Finite dimension: (a) the group of holomorphic automorphisms of a generic

surface Q3 is a finite-dimensional Lie group; (b) the group of holomorphic auto-
morphisms of Q3 is finite-dimensional if and only if Q3 is non-degenerate, that is,
all coordinate forms are linearly independent; (c) any surface of this type specified
by equations of degree less than three has an infinite-dimensional automorphism
group.
3. Homogeneity : Q3 is homogeneous; that is, its holomorphic automorphisms

act on Q3 transitively. The homogeneity is provided by quadratic-triangular trans-
formations.
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4. Symmetry : (a) the cubic is the most symmetric non-degenerate surface in that
the dimension of the germ group of a non-degenerate surface does not exceed the
dimension of the germ group of the tangent cubic; (b) the automorphism algebra of
the cubic parametrizes the family of maps of one non-degenerate germ into another.
5. Algebraic properties: (a) the Lie algebra of holomorphic vector fields on a non-

degenerate cubic is an algebra of polynomial vector fields of bounded degree, and
the degrees of the coefficients do not exceed five; (b) the automorphism group of a
non-degenerate cubic is a Lie subgroup of the group of birational transformations of
Cn+k with uniformly bounded degrees; one can estimate the degrees of numerators
and denominators in a non-cancellable representation by 15(n+k); (c) if two germs
are equivalent, then so are their tangent cubics, and two cubics are holomorphically
equivalent if and only if they are linearly equivalent.

The structure of the automorphism algebra AutQ3 of the cubic can be described
as follows. Let us introduce a gradation in the space of vector fields with coefficients
depending on (z, w2, w3) by setting

[z] = 1, [w2] = 2, [w3] = 3

[
∂

∂z

]
= −1,

[
∂

∂w2

]
= −2,

[
∂

∂w3

]
= −3;

then AutQ3 becomes a graded Lie algebra of the form

g−3 + g−2 + g−1 + g0 + g1 + g2 + g3 + g4 + g5 + g6.

Furthermore, the subalgebra g− = g−3 + g−2 + g−1 is the Lie algebra of the Lie
group Aut−Q3 of triangular-quadratic transformations of the form

z → p+ z,
w2 → (q + i〈p, p〉) + 2i〈z, p〉 +w2,

w3 → (r + 2iReΦ(p, p, p )) + 4iΦ(z, p, p ) + 2iΦ(z, z, p) + 2iΦ(p, p, z) + sw2 +w3;

here the point (p, q, r) ∈ Q3 is arbitrary and

ReΦ(z, p, z) = s〈z, z〉.

Thus, Aut−Q3 is a subgroup providing the homogeneity of Q3, and accordingly,
dimAut−Q3 = dimQ3 = 2n+ n

2 + k.
The subalgebra g0 corresponds to linear automorphisms

z → Λz, ζ → ρζ, w→ νw

of the cubic, where

〈Λz,Λz〉 = ρ〈z, z〉, Φ(Λz,Λz,Λz ) = νΦ(z, z, z ).

The dimension of this subgroup, which will be denoted by Aut0Q, may vary depend-
ing on Φ. However, we see from the defining relations that for a given non-singular
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matrix Λ the values of ρ and ν are uniquely determined. Hence the estimate
dimAut0Q � 2n2 is valid.
The action of holomorphic changes of variables on germs induces the linear action

Φ(z, z, z)→ νΦ(Λ−1z,Λ−1z,Λ−1z)

of the group GL(n,C) ⊕ GL(k,R) on the tangent cubics. The subalgebra g+ =
g1 + g2 + g3 + g4 + g5 + g6 is a nilpotent Lie algebra. The corresponding Lie group
is the subgroup of non-linear automorphisms of the cubic preserving the origin and
such that Λ = En, ρ = En2 , and ν = Ek. This group will be denoted by Aut+Q.
In all known examples (namely, (1, 2) [19], (1, 3), (1, 4), (1, 5), and (1, 6) [51], and
(n, n2+1) [49]), this subalgebra is trivial and all automorphisms preserving a point
are linear. Thus, the problem of the existence of a cubic with non-trivial subgroup
AutQ3 remains open. Apparently, just in the case of quadrics, there are no such
automorphisms for a generic cubic (rigidity), and one must seek exceptional cubics.

6.2. A quasiperiodic system of model surfaces. The construction carried out
here for d = 2, 3 has a generalization to manifolds with arbitrarily large length of the
Levi–Tanaka algebra [18]. The generation of model surfaces of increasing degrees
resembles the successive occupation of atomic energy levels by electrons [38]. The
entire series resembles Mendeleev’s periodic system.
Let Fm,n be the space of real polynomials of degree m in (z1, . . . , zn, z1, . . . , zn)

whose expansion in bidegrees does not contain components of bidegrees (m, 0) and
(0, m). Let km,n = dimFn,m; then km,n =

(
2n+m−1
m

)
− 2
(
n+m−1
m

)
. Now we set

Km,n = k2,n+k3,n+ · · ·+km,n; it can be shown that Km,n =
(
2n+m
m

)
−2
(
n+m
m

)
+1.

In particular,

k2,n = n
2, k3,n = n

2(n+ 1), k4,n = n
2(n + 1)(7n+ 1)/12.

A model surface Qd of type (n,K) and degree d, where Kd−1,n < K � Kd,n, is
a surface in the space

C
n ⊕ Ck2,n ⊕ · · · ⊕ Ckd−1,n ⊕ Ck,

k = K −Kd−1,n, with coordinates (z, w2, . . . , wd) determined by relations of the
form

Imwm = Φm(z, z), m = 2, . . . , d, (16)

where Φm, m = 2, . . . , d−1, is a vector consisting of basis elements of the space Fm,
and Φd is a vector consisting of linearly independent elements of Fd. We obtain a
non-degenerate quadric for d = 2, and a non-degenerate cubic for d = 3. We point
out that the degree d, in contrast to n and K, is not an independent parameter but
is determined by the condition that K must lie in a certain interval.
The surface Qd will be called the tangent model surface for a germ of the form

Imw2 = Φ2 + terms of weight ≥ 3,
. . .

Imwd = Φd + terms of weight ≥ (d+ 1).
(17)
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In the computation of weights we adopt the obvious convention that [Rewj ] = j.
A real-algebraic surface Qd of the form (15) will be called the tangent model surface
to a germ M0 of the form (16). The surface and the germ are said to be non-
degenerate if all the coordinate forms Φ are linearly independent.
Surfaces of the series Qd satisfy all requirements imposed on good models except

for one important property. We speak of universality. However, the surfaces Qd
are universal for d = 2 and 3. Using simple changes of variables, one can readily
show that an arbitrary germ of type (n,K), K3 < K � K4, with non-degenerate
3-jet can be represented in the form

Imw2 = Φ2(z, z ) + terms of weight ≥ 3,
Imw3 = Φ3(z, z ) + terms of weight ≥ 4,
Imw4 = Φ4(z, z ) + terms of weight ≥ 5,

(18)

which proves that the model is universal for d = 4. For d � 5 the model is no longer
universal. The cause is that the fraction of the variables z (the complex tangent)
in the set of all coordinates of the space becomes too small. As a result, one cannot
ensure a proper tangency of the germ and the model surface by choosing local coor-
dinates. The remedy is obvious: one must enlarge the class of model surfaces by
introducing some dependence on the variables Rew. This can be done without loss
of homogeneity. However, the key point of our program is to obtain a criterion for
the finite dimensionality. At the algebraic level the finite dimensionality, together
with the polynomiality and degree estimates, was derived from the analysis of a
linear system of differential equations. Once we pass to models involving a depen-
dence on Rew, this system no longer has constant coefficients. It follows that the
differential operators occurring in the system no longer commute. This results in
technical obstacles, which we hope to overcome in the near future.
There is one more question related to higher-degree model surfaces. Positive-

definite quadrics are the skeletons of homogeneous domains. To each model surface
one can assign its hull of holomorphy. This is a domain in Cn+K . If the model
surface is convex in some sense (‘positive definiteness’), then its hull of holomorphy
does not coincide with the entire space; if the surface can be placed in an acute
cone, then the hull of holomorphy proves to be biholomorphically equivalent to a
bounded domain. Since the skeleton is homogeneous, one can hope that the hull
of holomorphy itself has the same property. If this is the case, then model surfaces
can be a source of new examples of homogeneous bounded domains (new Siegel
domains).

§ 7. Surfaces with degeneration
Throughout the paper we have avoided ‘degenerate’ situations in the construc-

tion of model surfaces. In this section we touch on this issue, which permit us
to state one more property of good model surfaces as a conjecture. All surfaces
considered in this section are assumed to be real-analytic and connected.
We again consider the simplest situation, which has served as our starting

point. Let M be a connected surface of type (1, 1), that is, a hypersurface
in C2, and let ξ ∈ M . If the Levi form of M at ξ is non-degenerate, then
dimAutMξ � dimAutQ = 8, where Q is the unique model surface of this type.
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If the Levi form is degenerate at ξ, then M contains the non-empty analytic
set M0 = {p ∈ M : M is degenerate at p}. If M0 contains open parts of M , then
M0 = M by the uniqueness theorem. In this case it follows from the Frobenius
theorem that in some holomorphic coordinates in a neighbourhood of an arbitrary
point M is a hyperplane. In particular, dimAutMξ = ∞, and the same assertion
is true for an arbitrary point of this hypersurface.

It turns out that this is the only case in which a hypersurface germ can have an
infinite-dimensional automorphism group. Moreover, we claim that if a hypersur-
face is not locally flat, then dimAutMξ � dimAutQ = 8 for all ξ ∈M , regardless
of whether ξ is degenerate or non-degenerate.

The proof is easy. We consider nine arbitrary vector fields (X1, . . . , X9) from
autMξ defined in a neighbourhood Uξ of ξ. Since M is not locally flat, it
follows that M \M0 is a dense open subset of M . Let ξ′ ∈ (M \ M0) ∩ Uξ be
an arbitrary point. Since M is non-degenerate at ξ′, it follows that there is a non-
trivial linear combination of these nine fields with real coefficients that vanishes
identically in a neighbourhood of ξ′. These fields have holomorphic coefficients in a
full-dimensional neighbourhood of ξ, and their restrictions to M have real-analytic
coefficients. By the uniqueness theorem, the vanishing of the linear combination in a
neighbourhood of ξ′ can be continued to the whole of Uξ , which completes the proof.

Thus if M is a connected real-analytic hypersurface in C2 and ξ ∈ M , then the
following alternative holds.

Alternative (for a hypersurface in C2):

either dimAutMξ =∞ andM is equivalent to a hyperplane in a neighbourhood
of an arbitrary point,

or dimAutMξ � dimAutQ(1, 1) = 8.

Thus, the hyperquadric is the most symmetric hypersurface not only in the class
of non-degenerate germs but also in the class of all germs with finite-dimensional
automorphism group.

The subgroup AutξMξ of automorphisms preserving the point ξ (the stabilizer
subgroup of ξ) is five-dimensional for the case of a hyperquadric in C2. The author
does not know any examples of surfaces with finite-dimensional automorphism
group for which the stabilizer subgroup is larger. However, a proof is lacking,
and the problem remains open.

The possibility of local rectification of a surface has been studied by Freeman [32].
A surface germ Mξ in C

N is said to be q-rectifiable if it is biholomorphically equiv-

alent to a germ of the form M̃0×Cq , where M̃0 is a surface germ in CN−q. A germ
is said to be rectifiable if it is q-rectifiable for some q > 0. Freeman’s argument is
based on the Frobenius theorem.

A criterion for the finite dimensionality of the automorphism group of a hyper-
surface was suggested by Stanton [54]. It is more convenient to state it as an
infinite-dimensionality criterion: dimautMξ = ∞ if and only if there are no non-
zero tangent (1, 0)-fields with holomorphic coefficients. This criterion is not a trivial
restatement, but its verification is a computational problem of the same type as
the computation of the automorphism algebra. Stanton refers to germs with finite-
dimensional group as holomorphically non-degenerate. A connected real-analytic
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surface is (or is not) holomorphically non-degenerate at all points simultaneously
([5]; see also [37]).

The above proof of the alternative cannot be extended even to hypersurfaces
in C3. The Levi form of such a hypersurface is a Hermitian form on C2, and its rank
may be equal to 0, 1, or 2. If the rank is zero on an open part of the hypersurface,
then the hypersurface is rectifiable and the group is infinite-dimensional (holomor-
phic degeneracy). If the rank is equal to two, then the form is non-degenerate. If
the rank is equal to two at least at one point, then it is equal to two on a dense
open subset of the hypersurface. This permits us to reproduce our argument and
obtain the estimate dimAutMξ � dimAutQ(2, 1) = 15. However, the rank can be
equal to unity everywhere. An example is given by the light cone

{
(z1, z2, w) ∈ C3 : (Imw)2 = (Im z1)2 + (Im z2)2

}
.

The alternative remains valid, but the proof is much harder.

Baouendi, Ebenfelt, Hang, Rothschild, and Zaitsev [5]–[9] considered some char-
acteristics of degenerate points of a real manifold, in particular, l-non-degeneracy.
A manifoldM is said to be finitely non-degenerate at a point ξ if there is an l � 0
such that for an arbitrary (0, 1)-vector field L on M with L(ξ) �= 0 there are (0, 1)-
fields L1, . . . , Lm, 0 � m � l, such that [L1, . . . , [Lm, L], . . . ](ξ) /∈ T cξM ⊗ C. If l
is the minimum number with this property, then M is said to be l-non-degenerate
at ξ. Ebenfelt [23] wrote out normal forms of the equation of a 2-non-degenerate
real-analytic hypersurface in C3. In particular, he showed that the lower-order
terms in the equation of the hypersurface can be represented in one of the following
eight forms. If the Levi form of M at ξ is zero, that is, both eigenvalues of the Levi
form are zero, then:

(A.1) Imw = |z1|2(z2 + z2) + r(z21z2 + z21z2) +O(|z|4+ |Rew| |z|2), where r > 0;
(A.2) Imw = |z1|2(z2+z2)+(z21z2+z21z2)+ i|z1|2(z1−z1)+O(|z|4+ |Rew| |z|2);
(A.3) Imw = |z1|2(z2+z2)+(z1z22+z1z22)+|z2|2(λz2+λz2)+O(|z|4+|Rew| |z|2),

where λ ∈ C, λ �= 0;
(A.4) Imw = |z1|2(z1+ z1)+ |z2|2(z2+ z2)+ (µz21z2+µz21z2)+ (νz1z22+ νz1z22)+

O(|z|4 + |Rew| |z|2), where µ, ν ∈ C, µν �= 1;
(A.5) Imw = |z1|2(ηz1+ηz1)+(z21z2+z21z2)+(z1z22+z1z22)+O(|z|4+ |Rew| |z|2),

where η ∈ C.
If the Levi form of M at ξ has exactly one non-zero eigenvalue, then

(B.1) Imw = |z1|2+ |z2|2(z2 + z2) + γ(z21z2 + z21z2) +O(|z|4+ |Rew| |z|2), where
γ = 0, 1;

(B.2) Imw = |z1|2 + (z21z2 + z21z2) + O(|z|4 + |Rew| |z|2);
(B.3) Imw = |z1|2 + |z2|2(z1 + z1) +O(|z|4 + |Rew| |z|2).
Ershova [24] applied the model-surface method to each of these eight types.

In particular, a sharp bound for the dimension of the automorphism group was
obtained for each of the types. The maximum dimension is attained for the hyper-
surface Imw = |z1|2 + |z2|2(z2 + z2). (This is the type (B.1) for γ = 0.) The
entire group is seven-dimensional, and the stabilizer subgroup of the origin is three-
dimensional.
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This computation (more precisely, the part pertaining to the types (B.1), (B.2),
and (B.3)) permits us to complete the proof of the bound for the dimension of
the automorphism group of an arbitrary non-flat real-analytic hypersurface in C3.
Indeed, if M is a real-analytic hypersurface in C3 that is not locally flat, then
the points of l-non-degeneracy, where l � 2, from a dense open subset of M [7].
Repeating our argument for sixteen arbitrary fields, we see that they are linearly
dependent. Consequently, dimAutMξ � 15.
Thus, the alternative stated above remains valid for (2, 1)-surfaces.

Alternative (for a hypersurface in C3):
either dimAutMξ =∞ andM is equivalent to a hyperplane in a neighbourhood

of an arbitrary point,
or dimAutMξ � dimAutQ(2, 1) = 15.

Thus, hyperquadrics are the most symmetric surfaces in C3.
In C3 there are two non-equivalent hyperquadrics, but the dimensions of their

automorphism groups are the same and are equal to 15. This is specific to hyper-
surfaces. Model surfaces of higher codimension (say, quadrics) may have groups
of different dimensions, but there is a bound for each type. To state the general
conjecture, we denote by D(n, k) and d(n, k) the maximum dimensions of the auto-
morphism groups and stabilizer subgroups, respectively, over all model surfaces of
type (n, k).

Dimension conjecture. The following alternative holds for the germ Mξ of an
arbitrary real-analytic manifold:
either dimAutMξ =∞,
or dimAutMξ � D(n, k) and dimAutξMξ � d(n, k).

In closing, we note that the problem of constructing a system of model surfaces
including all cases of degeneracy leads naturally to a tree-like classification of germs.
Moreover, the classification tree is not finite even for hypersurfaces in C2.
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[27] V. Ezhov and G. Schmalz, “Poincaré automorphisms for nondegenerateCR quadrics”,Math.
Ann. 298:1 (1994), 79–87.

[28] V. Ezhov and G. Schmalz, “A matrix Poincaré formula for holomorphic automorphisms
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Ivanami Shoten and Princeton University Press, Tokyo–Princeton 1980.

[51] E. N. Shananina, “Models of CR-manifolds of type (1, k) for 3 � k � 7 and their
automorphisms”,Mat. Zametki 67 (2000), 452–459; English transl., Math. Notes 67 (2000),

382–388.

[52] S. N. Shevchenko, “Description of the algebra of infinitesimal automorphisms of quadrics

of codimension two and their classification”,Mat. Zametki 55:5 (1994), 142–153; English
transl.,Math. Notes 55 (1994), 534–542.

[53] S. N. Shevchenko, “Quadrics of codimension two, and their automorphisms”, Izv. Ross.

Akad. Nauk Ser. Mat. 58:4 (1994), 149–172; English transl., Russian Acad. Sci. Izv. Math.
45 (1995), 151–174.

[54] N. K. Stanton, “Infinitesimal CR automorphisms of rigid hypersurfaces”, Amer. J. Math.
117:1 (1995), 141–167; 118:1 (1996), 209–233.

[55] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs 1964;

Russian transl., Mir, Moscow 1970.

[56] A. Sukhov, Segre varieties and Lie symmetries, Publ. Inst. Rech. Math. Av., vol. 50,

Lille 1999.

[57] A. Sukhov, “On CR-mappings of real quadric manifolds”,Michigan Math. J. 41 (1999),
143–150.

http://www.turpion.org/info/lnkpdf?tur_a=im&tur_y=1995&tur_v=59&tur_n=3&tur_c=25


Real submanifolds in complex space 41

[58] N. Tanaka, “On the pseudo-conformal geometry of hypersurfaces of the space of n complex
variables”, J. Math. Soc. Japan 14 (1962), 397–429; “II. Graded Lie algebras and geometric

structures”, Proc. United States–Japan Seminar in Differential Geometry (Kyoto, 1965),
1966, pp. 147–150.
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